首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dot-blot hybridization procedure with synthetic oligonucleotide probes is reported, which allows the quantitative titration in genomic DNA of variant forms of repeated genes differing by a single nucleotide change. It involves the utilization of a pair of 22-base long oligonucleotides matching the two variant sequences and the choice of an hybridization temperature very close to the Td of the oligonucleotide/DNA duplexes. The selectivity is achieved through a competition between the cognate labeled and the non-cognate unlabeled probes in the hybridization mixture.  相似文献   

2.
SUMMARY: OligoArray is a program that computes gene specific and secondary structure free oligonucleotides for genome-scale oligonucleotide microarray construction or other applications. AVAILABILITY: The program code is distributed under the GNU General Public License and is freely available for non-profit use via request from the authors.  相似文献   

3.
4.
The development of a nanoparticle-based detection methodology for sensitive and specific DNA-based diagnostic applications is described. The technology utilizes gold nanoparticles derivatized with thiol modified oligonucleotides that are designed to bind complementary DNA targets. A glass surface with arrays of immobilized oligonucleotide capture sequences is used to capture DNA targets, which are then detected via hybridization to the gold nanoparticle probes. Amplification with silver allows for detection and quantitation by measuring evanescent wave induced light scatter with low-cost optical detection systems. Compared to Cy3-based fluorescence, silver amplified gold nanoparticle probes provide for a approximately 1000-fold increase in sensitivity. Furthermore, direct detection of non-amplified genomic DNA from infectious agents is afforded through increased specificity and even identification of single nucleotide polymorphisms (SNP) in human genomic DNA appears feasible.  相似文献   

5.
Synthesis of modified oligonucleotides in which the specific cytidine nucleoside analogues linked at 2'-OH position via a carbamate bond with an amino ethyl derivative of dansyl fluorophore is reported. For the multiple labeling of oligonucleotides, a strategy involving prelabeling at the monomeric level followed by solid phase assembly of oligonucleotides to obtain regiospecifically labeled probes has been described. The labeled monomer was phosphitylated using 2-cyanoethyl-N,N,N',N'-tetraisopropyl-phosphoramidite (Bis-reagent) and pyridiniumtrifluoro acetate (Py.TFA) as an activator. To ascertain the minimal number of labeled monomers required for a specific length of oligonucleotide for detection and also to assess the effect of carbamate linkage on hybridization, hexamer and 20-mer sequences were selected. Both were labeled with 1, 2, and 3 monomers at the 5'-end and hybridized with normal (unmodified) complementary sequences. As compared to midsequence or 3'-terminal labeling reported earlier, the 5'-terminal labeling has been found to have minimal contact-mediated quenching on duplex formation. This may be due to complementary deoxyguanosine (dG) rich oligonucleotide sequences or CG base pairs at a terminus that is known to yield stronger binding. This is one reason for selecting cytidine for labeling. The results may aid rational design of multiple fluorescent DNA probes for nonradioactive detection of nucleic acids.  相似文献   

6.
The usability of the DNA microarray format for the specific detection of bacteria based on their 16S rRNA genes was systematically evaluated with a model system composed of six environmental strains and 20 oligonucleotide probes. Parameters such as secondary structures of the target molecules and steric hindrance were investigated to better understand the mechanisms underlying a microarray hybridization reaction, with focus on their influence on the specificity of hybridization. With adequate hybridization conditions, false-positive signals could be almost completely prevented, resulting in clear data interpretation. Among 199 potential nonspecific hybridization events, only 1 false-positive signal was observed, whereas false-negative results were more common (17 of 41). Subsequent parameter analysis revealed that this was mainly an effect of reduced accessibility of probe binding sites caused by the secondary structures of the target molecules. False-negative results could be prevented and the overall signal intensities could be adjusted by introducing a new optimization strategy called directed application of capture oligonucleotides. The small number of false-positive signals in our data set is discussed, and a general optimization approach is suggested. Our results show that, compared to standard hybridization formats such as fluorescence in situ hybridization, a large number of oligonucleotide probes with different characteristics can be applied in parallel in a highly specific way without extensive experimental effort.  相似文献   

7.
Design considerations for array CGH to oligonucleotide arrays.   总被引:3,自引:0,他引:3  
BACKGROUND: Representational oligonucleotide microarray analysis has been developed for detection of single nucleotide polymorphisms and/or for genome copy number changes. In this process, the intensity of hybridization to oligonucleotides arrays is increased by hybridizing a polymerase chain reaction (PCR)-amplified representation of reduced genomic complexity. However, hybridization to some oligonucleotides is not sufficiently high to allow precise analysis of that portion of the genome. METHODS: In an effort to identify aspects of oligonucleotide hybridization affecting signal intensity, we explored the importance of the PCR product strand to which each oligonucleotide is homologous and the sequence of the array oligonucleotides. We accomplished this by hybridizing multiple PCR-amplified products to oligonucleotide arrays carrying two sense and two antisense 50-mer oligonucleotides for each PCR amplicon. RESULTS: In some cases, hybridization intensity depended more strongly on the PCR amplicon strand (i.e., sense vs. antisense) than on the detection oligonucleotide sequence. In other cases, the oligonucleotide sequence seemed to dominate. CONCLUSION: Oligonucleotide arrays for analysis of DNA copy number or for single nucleotide polymorphism content should be designed to carry probes to sense and antisense strands of each PCR amplicon to ensure sufficient hybridization and signal intensity.  相似文献   

8.
The usability of the DNA microarray format for the specific detection of bacteria based on their 16S rRNA genes was systematically evaluated with a model system composed of six environmental strains and 20 oligonucleotide probes. Parameters such as secondary structures of the target molecules and steric hindrance were investigated to better understand the mechanisms underlying a microarray hybridization reaction, with focus on their influence on the specificity of hybridization. With adequate hybridization conditions, false-positive signals could be almost completely prevented, resulting in clear data interpretation. Among 199 potential nonspecific hybridization events, only 1 false-positive signal was observed, whereas false-negative results were more common (17 of 41). Subsequent parameter analysis revealed that this was mainly an effect of reduced accessibility of probe binding sites caused by the secondary structures of the target molecules. False-negative results could be prevented and the overall signal intensities could be adjusted by introducing a new optimization strategy called directed application of capture oligonucleotides. The small number of false-positive signals in our data set is discussed, and a general optimization approach is suggested. Our results show that, compared to standard hybridization formats such as fluorescence in situ hybridization, a large number of oligonucleotide probes with different characteristics can be applied in parallel in a highly specific way without extensive experimental effort.  相似文献   

9.
Oligodeoxynucleotides have been selectively labeled with biotin at their 5'-termini through an aminoalkylphosphoramide linker arm by an efficient chemical method. The reactions were performed in aqueous solution on unprotected oligonucleotides and were insensitive of the sequence and length of the oligonucleotide. 5'-biotin-labeled oligonucleotides were hybridized to dot, Southern and genomic blots of target plasmid DNA immobilized on nitrocellulose filters. Detection level is about 2 fmole. There is no noticeable disturbance of the strength and selectivity of hybridization of the 5'-biotin-labeled probes in comparison with non-modified DNA.  相似文献   

10.
We describe here a new method for highly efficient detection of microRNAs by northern blot analysis using LNA (locked nucleic acid)-modified oligonucleotides. In order to exploit the improved hybridization properties of LNA with their target RNA molecules, we designed several LNA-modified oligonucleotide probes for detection of different microRNAs in animals and plants. By modifying DNA oligonucleotides with LNAs using a design, in which every third nucleotide position was substituted by LNA, we could use the probes in northern blot analysis employing standard end-labelling techniques and hybridization conditions. The sensitivity in detecting mature microRNAs by northern blots was increased by at least 10-fold compared to DNA probes, while simultaneously being highly specific, as demonstrated by the use of different single and double mismatched LNA probes. Besides being highly efficient as northern probes, the same LNA-modified oligonucleotide probes would also be useful for miRNA in situ hybridization and miRNA expression profiling by LNA oligonucleotide microarrays.  相似文献   

11.
Two different solid supports, channel glass and flat glass, were compared for their affect on the sensitivity and efficiency of DNA hybridization reactions. Both solid supports were tested using a set of arrayed, synthetic oligonucleotides that are designed to detect short insertion/deletion polymorphisms (SIDPs). A total of 13 different human SIDPs were chosen for analysis. Capture probes, designed for this test set, were covalently immobilized on substrates. Hybridization efficiency was assessed using fluorescently labeled stacking probes which were preannealed to the target and then hybridized to the support-bound oligonucleotide array; the hybridization pattern was detected by fluorescence imaging. It was found that structural features of nucleic acid capture probes tethered to a solid support and the molecular basis of their interaction with targets in solution have direct implications on the hybridization process. Our results demonstrate that channel glass has a number of practical advantages over flat glass including higher sensitivity and a faster hybridization rate.  相似文献   

12.
13.
Here we present the principle of fluorescence in situ hybridization (FISH) with combinatorial oligonucleotide (COMBO) probes as a new approach for the specific labeling of genomic sites. COMBO-FISH takes advantage of homopurine/homopyrimidine oligonucleotides that form triple helices with intact duplex genomic DNA, without the need for prior denaturation of the target sequence that is usually applied for probe binding in standard FISH protocols. An analysis of human genome databases has shown that homopurine/homopyrimidine sequences longer than 14 bp are nearly homogeneously distributed over the genome, and they represent from 1% to 2% of the entire genome. Because the observation volume in a confocal laser-scanning microscope equipped with a high numerical aperture lens typically corresponds to an approximate 250-kb chromatin domain in a normal mammalian cell nucleus, this volume should contain 150-200 homopurine/homopyrimidine stretches. Using DNA database information, one can configure a set of distinct, uniformly labeled oligonucleotide probes from these stretches that is expected to exclusively co-localize within a 250-kb chromatin domain. Due to the diffraction-limited resolution of a microscope, the fluorescence signals of the configured oligonucleotide probe set merge into a typical, nearly homogenous FISH spot. Using a set of 32 homopyrimidine probes, we performed experiments in the Abelson murine leukemia region of human chromosome 9 as some of the very first proofs-of-principle of COMBO-FISH. Although the experimental protocol currently contains several steps that are incompatible with living cell conditions, the theoretical approach may be the first methodological advance toward the long-term but still elusive goal of carrying out specific FISH in high-resolution fluorescence microscopy of vital cells.  相似文献   

14.
The discovery of complex structural variations that exist within individual genomes has prompted a need to visualize chromosomes at a higher resolution than previously possible. To address this concern, we established a robust, high-resolution fluorescence in situ hybridization (FISH) method that utilizes probes derived from high complexity libraries of long oligonucleotides (>150 mers) synthesized in massively parallel reactions. In silico selected oligonucleotides, targeted to only the most informative elements in 18 genomic regions of interest, eliminated the need for suppressive hybridization reagents. Because of the inherent flexibility in our probe design methods, we readily visualized regions as small as 6.7 kb with high specificity on human metaphase chromosomes, resulting in an overall success rate of 94%. Two-color FISH over a 479-kb duplication, initially reported as being identical in 2 individuals, revealed distinct 2-color patterns representing direct and inverted duplicons, demonstrating that visualization by high-resolution FISH provides further insight in the fine-scale complexity of genomic structures. The ability to design FISH probes for any sequenced genome along with the ease, reproducibility, and high level of accuracy of this technique suggests that it will be powerful for routine analysis of previously difficult genomic regions and structures.  相似文献   

15.
To date, most studies of multigenic expression patterns by long DNA array have used DNA fragments as probes. These probes are usually obtained as PCR products, and this represents a time-consuming and error-prone approach, requiring strict quality control. The present study examines the use of 40- and 70-mer synthetic oligonucleotides as probes for DNA array analysis with radioactive labeled targets. Design, spotting onto nylon filters, and hybridization conditions were determined and optimized. In this approach, the sensitivity and the specificity of the hybridization appear comparable to the conventional long DNA probes assay, permitting the analysis of small samples of approximately 1 microg total RNA. The long oligonucleotide array thus provides a very convenient method for the analysis of gene expression patterns in biological specimens and in clinical research.  相似文献   

16.
DNA microarray technology is a powerful tool for getting an overview of gene expression in biological samples. Although the successful use of microarray-based expression analysis was demonstrated in a number of applications, the main problem with this approach is the fact that expression levels deduced from hybridization experiments do not necessarily correlate with RNA concentrations. Moreover oligonucleotide probes corresponding to the same gene can give different hybridization signals. Apart from cross-hybridizations and differential splicing, this could be due to secondary structures of probes or targets. In addition, for low-copy genes, hybridization equilibrium may be reached after hybridization times much longer than the one commonly used (overnight, i.e., 15 h). Thus, hybridization signals could depend on kinetic properties of the probe, which may vary between different oligonucleotide probes immobilized on the same microarray. To validate this hypothesis, on-chip hybridization kinetics and duplex thermostability analysis were performed using oligonucleotide microarrays containing 50-mer probes corresponding to 10 mouse genes. We demonstrate that differences in hybridization kinetics between the probes exist and can influence the interpretation of expression data. In addition, we show that using on-chip hybridization kinetics, quantification of targets is feasible using calibration curves.  相似文献   

17.
18.
Data on five single-nucleotide polymorphisms (SNPs) per gene are estimated to allow association of disease risks or pharmacogenetic parameters with individual genes. Efficient technologies for rapidly detecting SNPs will therefore facilitate the mining of genomic information. Known methods for SNP analysis include restriction-fragment-length polymorphism polymerase chain reaction (PCR), allele-specific oligomer hybridization, oligomer-specific ligation assays, minisequencing, direct sequencing, fluorescence-detected 5'-exonuclease assays, and hybridization with PNA probes. Detection by mass spectrometry (MS) offers speed and high resolution. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) can detect primer extension products, mass-tagged oligonucleotides, DNA created by restriction endonuclease cleavage, and genomic DNA. We have previously reported MALDI-TOF-monitored nuclease selections of modified oligonucleotides with increased affinity for targets. Here we use nuclease selections for genotyping by treating DNA to be analyzed with oligonucleotide probes representing known genotypes and digesting probes that are not complementary to the DNA. With phosphodiesterase I, the target-bound, complementary probe is largely refractory to nuclease attack and its peak persists in mass spectra (Fig. 1A). In optimized assays, both alleles of a heterozygote were genotyped with six nonamer DNA probes (> or = 125 fmol each) and asymmetrically amplified DNA from exon 10 of the cystic fibrosis transmembrane regulatory gene (CFTR).  相似文献   

19.
A possibility of using oligonucleotide conjugates with minor groove ligands as probes for hybridization microarray chips was studied. The oligonucleotide conjugates contain a hairpin ligand (MGB) composed of two tripyrrolcarboxamide residues with an aminocaproic acid residue as a linker and bound to the oligonucleotide duplex AT tract in a site-specific manner. We used as (5'-3') probes GACAAGAp, GACAAAAp, GACAAGA-MGB, and GACAAAA-MGB. The oligonucleotides labeled with Cy3 cyanine dye, Cy3-ACTAATTTTGTC and Cy3-ACTAATCTTGTC, were used as targets. The maximal MGB effect on the fluorescence level of microarray chip spots, which caused its fourfold increase as compared with the initial unmodified duplex, was observed for the duplex containing only AT pairs in the ligand binding site. The presence of A-C and G-T mutations in the binding site (imperfect duplexes) or a C-G pair (perfect duplex) affects the change in fluorescence level to a considerably lesser degree.  相似文献   

20.
In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号