首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. This article is part of a Special Section entitled: Cell Death Pathways. Guest Editors: Frank Madeo and Slaven Stekovic.  相似文献   

3.
Xanthomonas campestris pv. glycines (Xcg), an etiological agent of the bacterial pustule disease of soybean, displayed nutritionally regulated caspase-dependent programmed cell death (PCD). Experiments showed that Xcg was under metabolic stress during PCD, as evident from the intracellular accumulation of NADH and ATP. Further, the accumulation of reactive oxygen species (ROS), as confirmed by 2',7'-dichlorofluorescein diacetate labeling, electron spin resonance spectroscopy, and scopoletin assay, was also observed along with the activation of caspase-3. ROS scavengers such as dimethylsulfoxide, glutathione, n-propyl gallate, and catalase significantly inhibited caspase biosynthesis as well as its activity, eventually leading to the inhibition of PCD. The presence of a sublethal concentration of an electron transport chain uncoupler, 2,4-dinitrophenol, was found to reduce the ROS generation and the increase in the cell survival. These results indicated that Xcg cells grown in a protein-rich medium experienced metabolic stress due to electron leakage from the electron transport chain, leading to the generation of ROS and the expression as well as the activation of caspase-3, and resulting in PCD. A bacterial DNA gyrase inhibitor, nalidixic acid, was also found to inhibit PCD. Gyrase, which regulates DNA superhelicity, and consequently DNA replication and cell multiplication, appears to be involved in the process.  相似文献   

4.
Endoplasmic reticulum (ER) stress has been implicated in the pathophysiology of many diseases including heart disease, cancer and neurodegenerative diseases such as Alzheimer’s and Huntington’s. Prolonged or excessive ER stress results in the initiation of signaling pathways resulting in cell death. Over the past decade much research investigating the onset and progression of ER stress-induced cell death has been carried out. Owing to this we now have a better understanding of the signaling pathways leading to ER stress-mediated cell death and have begun to appreciate the importance of ER localized stress sensors, IRE1α, ATF6 and PERK in this process. In this article we provide an overview of the current thinking and concepts concerning the various stages of ER stress-induced cell death, focusing on the role of ER localized proteins in sensing and triggering ER stress-induced death signals with particular emphasis on the contribution of calcium signaling and Bcl-2 family members to the execution phase of this process. We also highlight new and emerging directions in ER stress-induced cell death research particularly the role of microRNAs, ER-mitochondria cross talk and the prospect of mitochondria-independent death signals in ER stress-induced cell death.  相似文献   

5.
6.
A new generation of chroman/catechol hybrids bearing heterocyclic five-membered rings, such as 1,2,4-oxadiazole 1,3,4-oxadiazole, 1,2,3-triazole, tetrazole and isoxazole, were designed and synthesized. The activity of the new derivatives against oxidative stress induced neuronal damage, was evaluated using glutamate-challenged hippocampal HT22 cells.Compound 3 in which a 3,4-dimethoxyphenyl moiety, is directly attached to the 1,2,4-oxadiazole ring was the most active among the 2-substituted chroman analogues, with EC50 = 254 ± 65 nM. Concerning the 5-subtituted chroman analogues, isoxazole derivative 29 exhibited the strongest activity (EC50 = 245 ± 38 nM). However, 29 was cytotoxic at concentrations higher than 1 μM, while the triazole analogue 24 (EC50 = 801 ± 229 nM), was non-toxic at all concentrations tested.  相似文献   

7.
Up-regulation of several stress proteins such as heat-shock proteins and glucose-regulated proteins participate in tolerance against environmental stress. Previously, we found that protein-disulfide isomerase (PDI) is specifically up-regulated in response to hypoxia/brain ischemia in astrocytes. In addition, the overexpression of this gene into neurons protects against apoptotic cell death induced by hypoxia/brain ischemia. To address the detailed function of PDI, we screened for proteins that interact with PDI using the yeast two-hybrid system. We report here that PDI interacts with ubiquilin, which has a ubiquitin-like domain and a ubiquitin-associated domain. Interestingly, ubiquilin is also up-regulated in response to hypoxia in glial cells with a time course similar to that of PDI induction. In hypoxia-treated glial cells, the endogenous ubiquilin and PDI were almost completely co-localized, suggesting that ubiquilin is an endoplasmic reticulum-associated protein. Overexpression of this gene in neuronal cells resulted in significant inhibition of the DNA fragmentation triggered by hypoxia, but not that induced by nitric oxide or staurosporine. Moreover, ubiquilin has the ability to attenuate CHOP induction by hypoxia. These observations suggested that ubiquilin together with PDI have critical functions as regulatory proteins for CHOP-mediated cell death, and therefore up-regulation of these proteins may result in acquisition of tolerance against ischemic stress in glial cells.  相似文献   

8.
Roles of MAPKKK ASK1 in stress-induced cell death   总被引:10,自引:0,他引:10  
Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein (MAP) kinase kinase kinase that activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase signaling cascades. Recent findings from analyses of ASK1-deficient mice have revealed that ASK1 is required for apoptosis induced by oxidative stress, TNF and endoplasmic reticulum (ER) stress. In addition, several lines of evidence have suggested that ASK1 has diverse functions in the decision of cell fate beyond its pro-apoptotic activity. Thus, ASK1 appears to be a pivotal component not only in stress-induced cell death but also in a broad range of biological activities in order for cells to adapt to or oppose various stresses.  相似文献   

9.
Polymorphonuclear leukocytes (PMN) playcrucial roles in protecting hosts against invading microbes and in thepathogenesis of inflammatory tissue injury. Although PMN migrate intomucosal layers of digestive and respiratory tracts, only limitedinformation is available of their fate and function in situ. Wepreviously reported that, unlike circulating PMN (CPMN), PMN in theoral cavity spontaneously generate superoxide radical and nitric oxide (NO) in the absence of any stimuli. When cultured for 12 h under physiological conditions, oral PMN (OPMN) showed morphological changesthat are characteristic of those of apoptosis. Upon agarose gelelectrophoresis, nuclear DNA samples isolated from OPMN revealed ladder-like profiles characteristic of nucleosomal fragmentation. L-cysteine, reduced glutathione (GSH), and herbimycin A, aprotein tyrosine kinase inhibitor, suppressed the activation ofcaspase-3 and apoptosis of OPMN. Neither thiourea, superoxidedismutase (SOD), nor catalase inhibited the activation of caspase-3 and apoptosis. Moreover,N-acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibitorfor caspase-3, inhibited the fragmentation of DNA. These resultssuggested that oxidative stress and/or tyrosine-kinase-dependent pathway(s) activated caspase-3 in OPMN, thereby inducing their apoptosis.

  相似文献   

10.
In cartilage, chondrocytes are responsible for the biogenesis and maintenance of the extracellular matrix (ECM) composed of proteins, glycoproteins and proteoglycans. Various cellular stresses, such as hypoxia, nutrient deprivation, oxidative stress or the accumulation of advanced glycation end products (AGEs) during aging, but also translational errors or mutations in cartilage components or chaperone proteins affect the synthesis and secretion of ECM proteins, causing protein aggregates to accumulate in the endoplasmic reticulum (ER). This condition, referred to as ER stress, interferes with cartilage cell homeostasis and initiates the unfolded protein response (UPR), a rescue mechanism to regain cell viability and function. Chronic or irreversible ER stress, however, triggers UPR-initiated cell death. Due to unresolved ER stress in chondrocytes, diseases of the skeletal system, such as chondrodysplasias, arise. ER stress has also been identified as a contributing factor to the pathogenesis of cartilage degeneration processes such as osteoarthritis (OA). This review provides current knowledge about the biogenesis of ECM components in chondrocytes, describes possible causes for the impairment of involved processes and focuses on the ER stress-induced cell death in articular cartilage during OA. Targeting of the ER stress itself or intervention in UPR signaling to reduce death of chondrocytes may be promising for future osteoarthritis therapy.  相似文献   

11.
12.
13.
14.
Accumulation of reactive oxygen species during aging leads to programmed cell death (PCD) in many cell types but has not been explored in mammalian fertilized eggs, in which mitochondria are "immature," in contrast to "mature" mitochondria in somatic cells. We characterized PCD in mouse zygotes induced by either intensive (1 mM for 1.5 h) or mild (200 microM for 15 min) hydrogen peroxide (H(2)O(2)) treatment. Shortly after intensive treatment, zygotes displayed PCD, typified by cell shrinkage, cytochrome c release from mitochondria, and caspase activation, then terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining in condensed pronuclei. On the other hand, after mild treatment, zygotes arrested developmentally and showed neither cytochrome c release nor caspase activation over 48 h; until 72 h, 46% zygotes exhibited TUNEL staining, and 88% of zygotes lost plasma membrane integrity. Interestingly, mild oxidative treatment induced a decline in mitochondrial membrane potential and disruption of the mitochondrial matrix. Taken together, these results suggest that oxidative stress caused by H(2)O(2) induces PCD in mouse zygotes and that mitochondria are involved in the early phase of oxidative stress-induced PCD. Furthermore, mitochondrial malfunction also may contribute to cell cycle arrest, followed by cell death, triggered by mild oxidative stress.  相似文献   

15.
Endoplasmic reticulum stress-induced cell death mediated by the proteasome   总被引:2,自引:0,他引:2  
Cells exposed to sustained endoplasmic reticulum (ER) stress undergo programmed cell death and display features typical of apoptosis, such as cysteine aspartyl protease (caspase) activation, cytochrome c release, and DNA fragmentation. Here, we show that the execution of cell death induced by ER stress is mediated via the proteasome. Inhibition of the proteasome by lactacystin prevented ER stress-induced degradation of Bcl-2, release of cytochrome c, processing of effector caspase-3, and exposure of phosphatidylserine. Owing to the ability of lactacystin to inhibit cytochrome c release, we propose that the pro-apoptotic activity of the proteasome lies upstream of mitochondrial activation. Thus, the proteasome serves as a principal mediator of ER stress-induced cell death in this system.  相似文献   

16.
17.
Neuronal cell death happens as a result of the normal physiological process that occurs during development, or as part of the pathological process that occurs during disease. Death-associated protein kinase (DAPK) is an intracellular protein that mediates cell death by its serine/threonine kinase activity, and transmits apoptotic cell death signals in various cells, including neurons. DAPK is elevated in injured neurons in acute models of injury such as ischemia and seizure. The absence of DAPK has been shown to protect neurons from a wide variety of acute toxic insults. Moreover, DAPK also regulates neuronal cell death during central nervous system development. Neurons are initially overproduced in the developing nervous system, following which approximately one-half of the original cell population dies. This “naturally-occurring” or “programmed” cell death is essential for the construction of the developing nervous system. In this review, we focus on the role of DAPK in neuronal cell death after neuronal injury. The participation of DAPK in developmental neuronal death is also explained.  相似文献   

18.
Michiyo Nagano-Ito 《FEBS letters》2009,583(8):1363-2489
We used retroviral-mediated expression cloning to identify cDNAs that inhibit cell death induced by oxidative stress. To isolate the genes, we introduced a murine embryonic retroviral cDNA library into NIH/3T3 cells, and selected for cells resistant to hydrogen peroxide. The surviving cells were cloned, and the integrated cDNAs were rescued by polymerase chain reaction. Several of the isolated cDNAs are known to be involved in modulating the redox state of cells. Other cDNAs encode proteins known to suppress apoptosis caused by reasons other than oxidative stress. These included polyadenylate-binding protein, cytosolic 1 (Pabpc1) and translationally controlled tumor protein (TCTP).  相似文献   

19.
Cephalostatin 1 is a natural compound isolated from a marine worm that induces apoptosis in tumor cells via an apoptosome-independent but caspase-9-dependent pathway and through an endoplasmic reticulum stress response that is accompanied by caspase-4 activation. Here, we show that cephalostatin evokes mitochondrial Smac (second mitochondria-derived activator of caspases) but not cytochrome c release in various carcinoma cell lines. We also show that Smac is critically involved in caspase-9 activation as evidenced by gene silencing experiments. Remarkably, caspase-2 appears to be a major target for cephalostatin-induced cytosolic Smac. Using biochemical and genetic inhibition experiments, we demonstrate that caspase-2 participates in the apoptotic machinery induced by cephalostatin. Cephalostatin-activated caspase-2 appears to act as initiator caspase and is not involved in the activation of caspase-9. Importantly, experiments immunoprecipitating PIDD (p53-induced protein with a DD), RAIDD (RIP-associated ICH-1/CED-3-homologous protein with DD) and caspase-2 identify cephalostatin as an experimental drug that induces the formation of the PIDDosome. The bis-steroid cephalostatin proves to be both a helpful tool to investigate apoptotic signaling and a promising chemotherapeutic agent.  相似文献   

20.
Daxx is required for stress-induced cell death and JNK activation   总被引:5,自引:0,他引:5  
Daxx has been implicated in the modulation of apoptosis in response to various stimuli. In the nucleus, Daxx interacts and colocalizes with the promyelocytic leukemia protein (PML) into the PML-nuclear body. Moreover, overexpressed Daxx positively modulates FAS-ligand and TGFbeta-induced apoptosis. However, recent reports indicate that Daxx can also act as an antiapoptotic factor. As most studies on the role of Daxx in cell death have been conducted using tumour cell lines, we analysed the function of Daxx in physiological settings. We found that Daxx is induced upon exposure to ultraviolet (UV) irradiation and hydrogen peroxide treatment. We employed RNA interference to downregulate Daxx in primary fibroblasts. Remarkably, Daxx-depleted cells are resistant to cell death induced by both UV irradiation and oxidative stress. Furthermore, the downregulation of Daxx results in impaired MKK/c-Jun-N-terminal kinase (JNK) activation. This is the first evidence that Daxx promotes cell death and JNK activation in physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号