共查询到20条相似文献,搜索用时 0 毫秒
1.
Chaudhuri BN Chan S Perry LJ Yeates TO 《The Journal of biological chemistry》2004,279(23):24585-24591
The three-dimensional structure of the RNA-modifying enzyme, psi55 tRNA pseudouridine synthase from Mycobacterium tuberculosis, is reported. The 1.9-A resolution crystal structure reveals the enzyme, free of substrate, in two distinct conformations. The structure depicts an interesting mode of protein flexibility involving a hinged bending in the central beta-sheet of the catalytic module. Key parts of the active site cleft are also found to be disordered in the substrate-free form of the enzyme. The hinge bending appears to act as a clamp to position the substrate. Our structural data furthers the previously proposed mechanism of tRNA recognition. The present crystal structure emphasizes the significant role that protein dynamics must play in tRNA recognition, base flipping, and modification. 相似文献
2.
Purification, structure, and properties of Escherichia coli tRNA pseudouridine synthase I 总被引:9,自引:0,他引:9
H O Kammen C C Marvel L Hardy E E Penhoet 《The Journal of biological chemistry》1988,263(5):2255-2263
The RNA modification enzyme, tRNA pseudouridine synthase I has been isolated in 95% purity from an Escherichia coli strain harboring a multicopy plasmid with a 2.3-kilobase pair insert from the hisT operon. Its molecular size, amino acid composition, and amino-terminal sequence correspond to those predicted by the structure and expression of the hisT gene. Enzyme activity, as measured by a 3H release assay, is unaffected by pretreatment of tRNA pseudouridine synthase I with micrococcal nuclease and is optimized by the addition of a monovalent cation and thiol reductant. The activity is inhibited by all tRNA species tested, including substrates, modified tRNAs, nonsubstrates, or tRNAs containing 5-fluorouridine. Binding of tRNA pseudouridine synthase I occurs with both substrate and nonsubstrate tRNAs and does not require a monovalent cation. Our findings are consistent with a multistep mechanism whereby tRNA pseudouridine synthase I first binds nonspecifically and then forms transient covalent adducts with tRNA substrates. In the absence of other proteins, purified tRNA pseudouridine synthase I forms psi at all three modification sites known to be affected in hisT mutants. The 36.4-kDa polypeptide product of the gene adjacent to hisT, whose translation is linked to that of tRNA pseudouridine synthase I, is not a functional subunit for tRNA pseudouridine synthase I activity, nor is it a separate synthase acting at one of the three loci. 相似文献
3.
4.
A previous analysis of tRNA sequences suggested a correlation between the absence of a nucleotide at position 47 (nt 47) in the extra loop and the presence of a U13:G22 base pair in the D-stem. We have evaluated the significance of this correlation by determining the in vivo activity of tRNAs containing either a C13:G22 or a U13:G22 pair in tRNA molecules with or without nt 47. Although this correlation might reflect some malfunction of tRNAs lacking nt 47, but containing the C13:G22, assays of the in vivo suppressor activity showed that this tRNA is actually more active than the tRNA with the features found in the database, i.e., a U13:G22 base pair and no nt 47. Moreover, analogous constructs with a GGC anticodon permitted the growth of an Escherichia coli strain deleted for tRNA(Ala)GGC genes equally well. On the other hand, long-term growth experiments with competing E. coli strains harboring the tRNA lacking nt 47, either with the C13:G22 or the U13:G22 base pair demonstrated that the U13:G22 tRNA overtook the C13:G22 strain even when the starting proportion of strains favored the C13:G22 strain. Thus, the preference for the U13:G22 tRNA lacking nt 47 in the sequence database is most likely due to factors that come into play during extended growth or latency rather than to the ability of the tRNA to engage in protein synthesis. 相似文献
5.
Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p 总被引:1,自引:0,他引:1
下载免费PDF全文

Hellmuth K Grosjean H Motorin Y Deinert K Hurt E Simos G 《Nucleic acids research》2000,28(23):4604-4610
6.
Sequence alignment of the TruA, TruB, RsuA, and RluA families of pseudouridine synthases (PsiS) identifies a strictly conserved aspartic acid, which has been shown to be the critical nucleophile for the PsiS-catalyzed formation of pseudouridine (Psi). However, superposition of the representative structures from these four families of enzymes identifies two additional amino acids, a lysine or an arginine (K/R) and a tyrosine (Y), from a K/RxY motif that are structurally conserved in the active site. We have created a series of Thermotoga maritima and Escherichia coli pseudouridine 55 synthase (Psi55S) mutants in which the conserved Y is mutated to other amino acids. A new crystal structure of the T. maritima Psi55S Y67F mutant in complex with a 5FU-RNA at 2.4 A resolution revealed formation of 5-fluoro-6-hydroxypseudouridine (5FhPsi), the same product previously seen in wild-type Psi55S-5FU-RNA complex structures. HPLC analysis confirmed efficient formation of 5FhPsi by both Psi55S Y67F and Y67L mutants but to a much lesser extent by the Y67A mutant when 5FU-RNA substrate was used. However, both HPLC analysis and a tritium release assay indicated that these mutants had no detectable enzymatic activity when the natural RNA substrate was used. The combined structural and mutational studies lead us to propose that the side chain of the conserved tyrosine in these four families of PsiS plays a dual role within the active site, maintaining the structural integrity of the active site through its hydrophobic phenyl ring and acting as a general base through its OH group for the proton abstraction required in the last step of PsiS-catalyzed formation of Psi. 相似文献
7.
Crystal structure of human Pus10, a novel pseudouridine synthase 总被引:2,自引:0,他引:2
8.
Hoang C Chen J Vizthum CA Kandel JM Hamilton CS Mueller EG Ferré-D'Amaré AR 《Molecular cell》2006,24(4):535-545
RluA is a dual-specificity enzyme responsible for pseudouridylating 23S rRNA and several tRNAs. The 2.05 A resolution structure of RluA bound to a substrate RNA comprising the anticodon stem loop of tRNA(Phe) reveals that enzyme binding induces a dramatic reorganization of the RNA. Instead of adopting its canonical U turn conformation, the anticodon loop folds into a new structure with a reverse-Hoogsteen base pair and three flipped-out nucleotides. Sequence conservation, the cocrystal structure, and the results of structure-guided mutagenesis suggest that RluA recognizes its substrates indirectly by probing RNA loops for their ability to adopt the reorganized fold. The planar, cationic side chain of an arginine intercalates between the reverse-Hoogsteen base pair and the bottom pair of the anticodon stem, flipping the nucleotide to be modified into the active site of RluA. Sequence and structural comparisons suggest that pseudouridine synthases of the RluA, RsuA, and TruA families employ an equivalent arginine for base flipping. 相似文献
9.
Kaya Y Del Campo M Ofengand J Malhotra A 《The Journal of biological chemistry》2004,279(18):18107-18110
TruD, a recently discovered novel pseudouridine synthase in Escherichia coli, is responsible for modifying uridine13 in tRNA(Glu) to pseudouridine. It has little sequence homology with the other 10 pseudouridine synthases in E. coli which themselves have been grouped into four related protein families. Crystal structure determination of TruD revealed a two domain structure consisting of a catalytic domain that differs in sequence but is structurally very similar to the catalytic domain of other pseudouridine synthases and a second large domain (149 amino acids, 43% of total) with a novel alpha/beta fold that up to now has not been found in any other protein. 相似文献
10.
11.
12.
S Raychaudhuri L Niu J Conrad B G Lane J Ofengand 《The Journal of biological chemistry》1999,274(27):18880-18886
The Escherichia coli gene rluA, coding for the pseudouridine synthase RluA that forms 23 S rRNA pseudouridine 746 and tRNA pseudouridine 32, was deleted in strains MG1655 and BL21/DE3. The rluA deletion mutant failed to form either 23 S RNA pseudouridine 746 or tRNA pseudouridine 32. Replacement of rluA in trans on a rescue plasmid restored both pseudouridines. Therefore, RluA is the sole protein responsible for the in vivo formation of 23 S RNA pseudouridine 746 and tRNA pseudouridine 32. Plasmid rescue of both rluA- strains using an rluA gene carrying asparagine or threonine replacements for the highly conserved aspartate 64 demonstrated that neither mutant could form 23 S RNA pseudouridine 746 or tRNA pseudouridine 32 in vivo, showing that this conserved aspartate is essential for enzyme-catalyzed formation of both pseudouridines. In vitro assays using overexpressed wild-type and mutant synthases confirmed that only the wild-type protein was active despite the overexpression of wild-type and mutant synthases in approximately equal amounts. There was no difference in exponential growth rate between wild-type and MG1655(rluA-) either in rich or minimal medium at 24, 37, or 42 degrees C, but when both strains were grown together, a strong selection against the deletion strain was observed. 相似文献
13.
14.
Crystal structure of the highly divergent pseudouridine synthase TruD reveals a circular permutation of a conserved fold 总被引:2,自引:0,他引:2
The pseudouridine (Psi) synthases Pus7p and TruD define a family of RNA-modifying enzymes with no sequence similarity to previously characterized Psi synthases. The 2.2 A resolution structure of Escherichia coli TruD reveals a U-shaped molecule with a catalytic domain that superimposes closely on that of other Psi synthases. A domain that appears to be unique to TruD/Pus7p family enzymes hinges over the catalytic domain, possibly serving to clasp the substrate RNAs. The active site comprises residues that are conserved in other Psi synthases, although at least one comes from a structurally distinct part of the protein. Remarkably, the connectivity of the structural elements of the TruD catalytic domain is a circular permutation of that of its paralogs. Because the sequence of the permuted segment, a beta-strand that bisects the catalytic domain, is conserved among orthologs from bacteria, archaea and eukarya, the permutation likely happened early in evolution. 相似文献
15.
16.
17.
Phosphorylation of glycogen has been known for decades; however, the basic metabolic pathways responsible for this modification are unknown. In this issue, Tagliabracci et al. (2011) report the enzyme responsible for incorporating phosphate and the chemical nature of the phosphate linkage, providing a framework for expanding our understanding of a devastating form of epilepsy. 相似文献
18.
Van Lanen SG Kinzie SD Matthieu S Link T Culp J Iwata-Reuyl D 《The Journal of biological chemistry》2003,278(12):10491-10499
The enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase catalyzes the penultimate step in the biosynthesis of the hypermodified tRNA nucleoside queuosine (Q), an unprecedented ribosyl transfer from the cofactor S-adenosylmethionine (AdoMet) to a modified-tRNA precursor to generate epoxyqueuosine (oQ). The complexity of the reaction makes it an especially interesting mechanistic problem, and as a foundation for detailed kinetic and mechanistic studies we have carried out the basic characterization of the enzyme. Importantly, to allow for the direct measurement of oQ formation, we have developed protocols for the preparation of homogeneous substrates; specifically, an overexpression system was constructed for tRNA(Tyr) in an E. coli queA deletion mutant to allow for the isolation of large quantities of substrate tRNA, and [U-ribosyl-(14)C]AdoMet was synthesized. The enzyme shows optimal activity at pH 8.7 in buffers containing various oxyanions, including acetate, carbonate, EDTA, and phosphate. Unexpectedly, the enzyme was inhibited by Mg(2+) and Mn(2+) in millimolar concentrations. The steady-state kinetic parameters were determined to be K(m)(AdoMet) = 101.4 microm, K(m)(tRNA) = 1.5 microm, and k(cat) = 2.5 min(-1). A short minihelix RNA was synthesized and modified with the precursor 7-aminomethyl-7-deazaguanine, and this served as an efficient substrate for the enzyme (K(m)(RNA) = 37.7 microm and k(cat) = 14.7 min(-1)), demonstrating that the anticodon stem-loop is sufficient for recognition and catalysis by QueA. 相似文献
19.
J F Hainfeld M Sprinzl V Mandiyan S J Tumminia M Boublik 《Journal of structural biology》1991,107(1):1-5
Scanning transmission electron microscopic images of transfer RNAs reveal the molecular dimensions and compact morphology of these small macromolecules in unprecedented detail. Selective labeling of a sulfhydryl group on 2-thiocytidine enzymatically inserted at position 75 at the 3' end of yeast tRNA(Phe) with an undecagold cluster permits identification of this specific tRNA site by dark field STEM. Imaging of a single nucleotide at a defined location on the tRNA molecule should make it possible to localize in situ tRNAs at the A, P, and E sites of the ribosomal peptidyl transferase center, and in complexes of tRNA with enzymes and elongation factors. In addition, this approach may be used for the highly specific topographical mapping of other RNAs and/or biological macromolecular complexes. 相似文献
20.
We previously isolated from random sequences ribozymes able to form a glycosidic linkage between a ribose sugar and 4-thiouracil in a reaction that mimics protein-catalyzed nucleotide synthesis. Here we report on two serial in vitro selection experiments that defined the core motif of one of the nucleotide synthase ribozymes and provided improved versions of this ribozyme. The first selection experiment started from a degenerate sequence pool based on the previously isolated sequence and used a selection-amplification protocol that allowed the sequence requirements at the 3' terminus of the ribozyme to be interrogated. Comparing the active sequences identified in this experiment revealed the complicated secondary structure of the nucleotide synthase ribozyme. A second selection was then performed to remove nonessential sequence from the ribozyme. This selection started with a pool with variation introduced in both the sequence and the length of the nonconserved loops and joining regions. This pool was generated using a partial reblocking/deblocking strategy on a DNA synthesizer, allowing the combinatorial synthesis of both point deletions and point substitutions. The consensus ribozyme motif that emerged was an approximately 71 nt pseudoknot structure with five stems and two important joining segments. Comparative sequence analysis and a cross-linking experiment point to the probable location of nucleotide synthesis. The prototype isolate from the second selection was nearly 35 times more efficient than the initial isolate and at least 10(8) times more efficient than an upper limit of an as-yet undetectable uncatalyzed reaction, supporting the idea that RNA-catalyzed nucleotide synthesis might have been important in an RNA world. 相似文献