首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV and related primate lentiviruses possess single-stranded RNA genomes. Multiple regions of these genomes participate in critical steps in the viral replication cycle, and the functions of many RNA elements are dependent on the formation of defined structures. The structures of these elements are still not fully understood, and additional functional elements likely exist that have not been identified. In this work, we compared three full-length HIV-related viral genomes: HIV-1NL4-3, SIVcpz, and SIVmac (the latter two strains are progenitors for all HIV-1 and HIV-2 strains, respectively). Model-free RNA structure comparisons were performed using whole-genome structure information experimentally derived from nucleotide-resolution SHAPE reactivities. Consensus secondary structures were constructed for strongly correlated regions by taking into account both SHAPE probing structural data and nucleotide covariation information from structure-based alignments. In these consensus models, all known functional RNA elements were recapitulated with high accuracy. In addition, we identified multiple previously unannotated structural elements in the HIV-1 genome likely to function in translation, splicing and other replication cycle processes; these are compelling targets for future functional analyses. The structure-informed alignment strategy developed here will be broadly useful for efficient RNA motif discovery.  相似文献   

2.
We analyzed the leader region of human immunodeficiency virus type 1 (HIV-1) RNA to decipher the nature of the cis-acting E/psi element required for encapsidation of viral RNA into virus particles. Our data indicate that, for RNA encapsidation, there are at least two functional subregions in the leader region. One subregion is located at a position immediately proximal to the major splice donor, and the second is located between the splice donor and the beginning of the gag gene. This suggests that at least two discrete cis-acting elements are recognition signals for encapsidation. To determine whether specific putative RNA secondary structures serve as the signal(s) for encapsidation, we constructed primary base substitution mutations that would be expected to destabilize these potential structures and second-site compensatory mutations that would restore secondary structure. Analysis of these mutants allowed the identification of two discrete hairpins that facilitate RNA encapsidation in vivo. Thus, the HIV-1 E/psi region is a multipartite element composed of specific and functional RNA secondary structures. Compensation of the primary mutations by the second-site mutations could not be attained in trans. This indicates that interstrand base pairing between these two stem regions within the hairpins does not appear to be the basis for HIV-1 RNA dimer formation. Comparison of the hypothetical RNA secondary structures from 10 replication-competent HIV-1 strains suggests that a subset of the hydrogen-bonded base pairs within the stems of the hairpins is likely to be required for function in cis.  相似文献   

3.
4.
5.
The massively parallel genetic algorithm (GA) for RNA structure prediction uses the concepts of mutation, recombination, and survival of the fittest to evolve a population of thousands of possible RNA structures toward a solution structure. As described below, the properties of the algorithm are ideally suited to use in the prediction of possible folding pathways and functional intermediates of RNA molecules given their sequences. Utilizing Stem Trace, an interactive visualization tool for RNA structure comparison, analysis of not only the solution ensembles developed by the algorithm, but also the stages of development of each of these solutions, can give strong insight into these folding pathways. The GA allows the incorporation of information from biological experiments, making it possible to test the influence of particular interactions between structural elements on the dynamics of the folding pathway. These methods are used to reveal the folding pathways of the potato spindle tuber viroid (PSTVd) and the host killing mechanism of Escherichia coli plasmid R1, both of which are successfully explored through the combination of the GA and Stem Trace. We also present novel intermediate folds of each molecule, which appear to be phylogenetically supported, as determined by use of the methods described below.  相似文献   

6.
The coexistence of multiple codes in the genome of human immunodeficiency virus type 1 (HIV-1) was analyzed. We explored factors constraining the variability of the virus genome primarily in relation to conserved RNA secondary structures overlapping coding sequences, and used a simple combination of algorithms for RNA secondary structure prediction based on the nearest-neighbor thermodynamic rules and a statistical approach. In our previous study, we applied this combination to a non- redundant data set of env nucleotide sequences, confirmed the conservative secondary structure of the rev-responsive element (RRE) and found a new RNA structure in the first conserved (C1) region of the env gene. In this study, we analyzed the variability of putative RNA secondary structures inside the nef gene of HIV-1 by applying these algorithms to a non-redundant data set of 104 nef sequences retrieved from the Los Alamos HIV database, and predicted the existence of a novel functional RNA secondary structure in the β3/β4 regions of nef. The predicted RNA fold in the β3/β4 region of nef appears in two forms with different loop sizes. The loop of the first fold consists of seven nucleotides (positions 494–500), with consensus UCAAGCU appearing in 79% of sequences. The other has a five-base loop (positions 495–499) with consensus CAAGC. The difference in size between these two loops may reflect the difference between respective counterparts in the hairpin recognition. This may also have an adaptive biological significance.  相似文献   

7.
AIDS in Africa is characterized by the equal distribution of mortality between the two genders because of highly virulent human immunodeficiency virus type 1 (HIV-1) strains. The viral protein Tat trans-activates viral gene expression and is essential for HIV-1 replication. We chemically synthesized six different Tat proteins, with sizes ranging from 86 to 101 residues, from HIV-1 isolates located in different parts of the world including highly virulent African strains. Protein purification, mass spectroscopy, and amino acid analysis showed that the synthesis was successful in each case but with different yields. We show that all have the ability to bind the HIV long terminal repeat (LTR) RNA trans-activation response element (TAR) region, involved in Tat-mediated trans-activation, but structural heterogeneities are revealed by circular dichroism. These Tat synthetic proteins cross membranes but differ in their ability to trans-activate an HIV LTR-reporter gene in stably transfected HeLa cells. Two Tat proteins from virulent African HIV-1 strains were much more active than those from Europe and the United States. The interferon-induced kinase (PKR), involved in cell antiviral defense, phosphorylates only Tat variants corresponding to less or nonvirulent HIV-1 isolates. Our results indicate that the high virulence of some African HIV-1 strains could be related to Tat activity.  相似文献   

8.
9.
The secondary structure of HIV-1 gp120 was predicted using multiple alignment and a combination of two independent methods based on neural network and nearest-neighbor algorithms. The methods agreed on the secondary structure for 80% of the residues in BH10 gp120. Six helices were predicted in HIV strain BH10 gp120, as well as in 27 other HIV-1 strains examined. Two helical segments were predicted in regions displaying profound sequence variation, one in a region suggested to be critical for CD4 binding. The predicted content of helix, β-strand, and coil was consistent with estimates from Fourier transform infrared spectroscopy. The predicted secondary structure of gp120 compared well with data from NMR analysis of synthetic peptides from the V3 loop and the C4 region. As a first step towards modeling the tertiary structure of gp120, the predicted secondary structure may guide the design of future HIV sub-unit vaccine candidates. © 1996 Wiley-Liss, Inc.  相似文献   

10.
11.
12.
The model describing the conformational properties of the HIV-1 principal neutralizing determinant in the geometric space of dihedrals was generated in terms of NMR spectroscopy data published in literature. To gain an object in view, the following successive steps were put into effect: (i) the NMR-based local structures for the HIV(MN) V3 loop were determined in water and in a mixed water/trifluoroethanol (TFE) solvent (7:3), (ii) in either case, the conformations of its irregular segments were analyzed and the secondary structure elements identified, (iii) to appreciate the degree of conformational mobility of the stretch of interest, the simulated structures were compared with each other, (iv) to detect the amino acids retaining their conformations inside the diverse HIV-1 isolates, the structures computed were collated with the one derived previously for the V3 loop from Thailand isolate, and (v) as a matter of record, the structurally rigid residues, that may present the forward-looking targets for AIDS drug researches, were revealed. Summing up the principal results arising from these studies, the following conclusions were drawn: I. The HIV(MN) V3 loop offers the highly mobile fragment of gp120 sensitive to its environment whose changes trigger the large-scale structural reforms, bringing in substantial altering the secondary structure of this functionally important site of the virus envelope. II. In water, it exhibits extended site 1-14 separated by double beta-turn 15-20 with unordered region 21-35. III. Adding the TFE gives rise to destruction of the regular structure in the V3 loop N-terminal, stimulates the formation of 3(10)-helix in site 24-31, and affects also its central region 20-25 forming the HIV-1 immunogenic crown. IV. Regardless of statistically significant differences between local structures of the HIV(MN) V3 loop in water and in water/TFE solution, over one-third of residues keeps their conformational states; the register of these amino acids comprises Asn-25 critical for virus binding with primary cell receptor CD4 as well as Arg-3 critical for utilization of CCR5 coreceptor. V. There are no conserved structural motifs within the V3 loops from Minnesota and Thailand HIV-1 strains. However, perceptible portion of amino acids (more than 35%), including those appearing in the functionally important regions of gp120, holds the values of dihedral angles in which case. The implications are discussed in conjunction with the data on the experimental observations for the HIV-1 principal neutralizing determinant.  相似文献   

13.
14.
15.
Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny.  相似文献   

16.
ABSTRACT: BACKGROUND: Increasingly, biologists and biochemists use computational tools to design experiments to probe the function of proteins and/or to engineer them for a variety of different purposes. The most effective strategies rely on the knowledge of the three-dimensional structure of the protein of interest. However it is often the case that an experimental structure is not available and that models of different quality are used instead. On the other hand, the relationship between the quality of a model and its appropriate use is not easy to derive in general, and so far it has been analyzed in detail only for specific application RESULTS: This paper describes a database and related software tools that allow testing of a given structure based methods on models of a protein representing different levels of accuracy. The comparison of the results of a computational experiment on the experimental structure and on a set of its decoy models will allow developers and users to assess which is the specific threshold of accuracy required to perform the task effectively. CONCLUSIONS: The ModelDB server automatically builds decoy models of different accuracy for a given protein of known structure and provides a set of useful tools for their analysis. Pre-computed data for a non-redundant set of deposited protein structures are available for analysis and download in the ModelDB database.  相似文献   

17.
RNAMotif, an RNA secondary structure definition and search algorithm   总被引:26,自引:7,他引:19       下载免费PDF全文
RNA molecules fold into characteristic secondary and tertiary structures that account for their diverse functional activities. Many of these RNA structures are assembled from a collection of RNA structural motifs. These basic building blocks are used repeatedly, and in various combinations, to form different RNA types and define their unique structural and functional properties. Identification of recurring RNA structural motifs will therefore enhance our understanding of RNA structure and help associate elements of RNA structure with functional and regulatory elements. Our goal was to develop a computer program that can describe an RNA structural element of any complexity and then search any nucleotide sequence database, including the complete prokaryotic and eukaryotic genomes, for these structural elements. Here we describe in detail a new computational motif search algorithm, RNAMotif, and demonstrate its utility with some motif search examples. RNAMotif differs from other motif search tools in two important aspects: first, the structure definition language is more flexible and can specify any type of base–base interaction; second, RNAMotif provides a user controlled scoring section that can be used to add capabilities that patterns alone cannot provide.  相似文献   

18.

Background  

Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization.  相似文献   

19.
Los Alamos Hepatitis C Immunology Database   总被引:3,自引:0,他引:3  
The Los Alamos Hepatitis C Virus (HCV) Sequence Database (http://hcv.lanl.gov or http://hcv-db.org) was officially launched in September 2003. The sister HCV Immunology Database was made public in September 2004. The HCV Immunology Database is based on the Human Immunodeficiency Virus (HIV) Immunology Database. The HCV Immunology Database contains a curated inventory of immunological epitopes in HCV and their interaction with the immune system, with associated retrieval and analysis tools. This article describes in detail the types of data and services that the new database offers, the tools provided and the database framework. The data and some of the HCV database tools are available for download for non-commercial use.  相似文献   

20.
Automated genome sequence analysis and annotation.   总被引:5,自引:0,他引:5  
MOTIVATION: Large-scale genome projects generate a rapidly increasing number of sequences, most of them biochemically uncharacterized. Research in bioinformatics contributes to the development of methods for the computational characterization of these sequences. However, the installation and application of these methods require experience and are time consuming. RESULTS: We present here an automatic system for preliminary functional annotation of protein sequences that has been applied to the analysis of sets of sequences from complete genomes, both to refine overall performance and to make new discoveries comparable to those made by human experts. The GeneQuiz system includes a Web-based browser that allows examination of the evidence leading to an automatic annotation and offers additional information, views of the results, and links to biological databases that complement the automatic analysis. System structure and operating principles concerning the use of multiple sequence databases, underlying sequence analysis tools, lexical analyses of database annotations and decision criteria for functional assignments are detailed. The system makes automatic quality assessments of results based on prior experience with the underlying sequence analysis tools; overall error rates in functional assignment are estimated at 2.5-5% for cases annotated with highest reliability ('clear' cases). Sources of over-interpretation of results are discussed with proposals for improvement. A conservative definition for reporting 'new findings' that takes account of database maturity is presented along with examples of possible kinds of discoveries (new function, family and superfamily) made by the system. System performance in relation to sequence database coverage, database dynamics and database search methods is analysed, demonstrating the inherent advantages of an integrated automatic approach using multiple databases and search methods applied in an objective and repeatable manner. AVAILABILITY: The GeneQuiz system is publicly available for analysis of protein sequences through a Web server at http://www.sander.ebi.ac. uk/gqsrv/submit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号