首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plasmid-free Enterococcus faecalis excrete peptides (sex pheromones) which specifically induce a mating response in strains harboring certain conjugative plasmids. The response is characterized by the synthesis of a “fuzzy” surface material, visible by electron microscopy, which is believed to facilitate the aggregation of donors and recipients. Transconjugants which receive a specific plasmid shut down the production of endogenous pheromone; however, they continue to produce pheromones specific for donors harboring different classes of plasmids. In this review, we summarize what is known about the biochemistry and genetics of this phenomenon. Some emphasis is given to the hemolysin plasmid pAD1 and the regulation of its conjugal transfer.  相似文献   

3.
The possibility of transfer of genetic information by conjugation from gram-positive to gram-negative bacteria was investigated with a pBR322-pAM beta 1 chimeric plasmid, designated pAT191. This shuttle vector, which possesses the tra functions of the streptococcal plasmid pAM beta 1, was conjugatively transferred from Enterococcus faecalis to Escherichia coli with an average frequency of 5 x 10(-9) per donor colony formed after mating.  相似文献   

4.
Summary During conjugative transfer of sex pheromone plasmids ofEnterococcus faecalis a so-called surface exclusion protein reduces the frequency with which these plasmids are transferred to cells already possessing the same plasmid. We report here the DNA sequence of a 3 .8 kb fragment of the sex pheromone plasmid pAD1 containing the structural genesea1 for surface exclusion protein and a small open reading frame (ORF) upstream ofsea1. Surface exclusion protein Seal was found to be highly homologous to the surface exclusion protein Sec10 encoded by the sex pheromone plasmid pCF10. Hybridization studies with DNA probes derived from the structural gene seal demonstrated that, with the exception of pAM373, all known sex pheromone plasmids carry a homologous gene. These studies also indicated that the genetic organization is similar in these plasmids, with the structural gene for surface exclusion protein being located 5 to that for aggregation substance.  相似文献   

5.
6.
This research reports the sensitivity of a clinical isolate of Enterococcus faecalis to sodium N-lauroylsarcosinate (sarkosyl) and sodium dodecyl sulfate (SDS), as well as the efficiency of these detergents in curing the strain. Compared to Escherichia coli, Enterococcus faecalis was very sensitive to both detergents, with minimum inhibitory concentrations (MIC) for the latter being 100 times lower than for Escherichia coli. The clinical isolate of Enterococcus faecalis used in this study exhibited plasmid-borne resistance to kanamycin (MIC 2 mg/ml) and tetracycline (MIC 50 μg/ml); 3% curing was observed after growth in the presence of sarkosyl but no curing was observed after growth in the presence of either SDS or acridine orange. In contrast, 35% curing of plasmid-bearing Escherichia coli was observed after growth in the presence of either SDS or acridine orange, but none was observed after growth in the presence of sarkosyl.  相似文献   

7.
The broad-host-range plasmid pAM beta 1 (erythromycin resistance) was transferred conjugally from Streptococcus lactis to Lactobacillus reuteri, L. murinus, and L. fermentum. Transfer of pAM beta 1 between two L. reuteri strains occurred, and lactobacillus transconjugants could act as donors of pAM beta 1 in crosses with Enterococcus faecalis JH2-2.  相似文献   

8.
The low G+C gram-positive bacterium Lactococcus lactis harbours two highly similar conjugative elements: an integrative and conjugative element called sex factor and the pRS01 plasmid. Originally, it was believed that the host range of the sex factor was limited to L. lactis subspecies. Here, it is reported that pTRK28 cointegrates of a spectinomycin-marked L. lactis sex factor and of the pRS01 conjugative plasmid can be transferred from L. lactis to Enterococcus faecalis. These results demonstrate the conjugative transfer of these elements to other bacterial species. Furthermore, it is reported that Ll.LtrB, a mobile group II intron carried by both elements, can invade its recognition site upon pRS01 conjugative transfer to E. faecalis.  相似文献   

9.
Pheromone-inducible plasmid transfer is a novel form of bacterial conjugation which has, to date, been observed only in Enterococcus (Streptococcus) faecalis. This process includes several important stages of interaction between the donor and recipient cell. The initial interaction is the transmission of a chemical signal from the recipient to the donor cell. Recent evidence has shown that the signal is in the form of a small hydrophobic peptide, which is capable of inducing a complex mating response in the donor cell at concentrations as low as 1-5 molecules per responder cell. Most E. faecalis strains produce multiple pheromones, each of which induces a response only in cells carrying a particular plasmid (or member of a family of related plasmids). Genetic functions ascribed to the pheromone response include: (i) cell-cell aggregation, which promotes initial close contact between mating cells; (ii) surface exclusion, which prevents plasmid transfer between aggregated donor cells; and (iii) highly efficient DNA transfer, which requires other unidentified functions in addition to aggregation. The first two processes appear to be mediated by proteinaceous surface antigens.  相似文献   

10.
The broad-host-range plasmid pAM beta 1 (erythromycin resistance) was transferred conjugally from Streptococcus lactis to Lactobacillus reuteri, L. murinus, and L. fermentum. Transfer of pAM beta 1 between two L. reuteri strains occurred, and lactobacillus transconjugants could act as donors of pAM beta 1 in crosses with Enterococcus faecalis JH2-2.  相似文献   

11.
The distribution of sex pheromone induced aggregation substance was studied on the cell surface of various Enterococcus faecalis strains. In the accompanying paper we have shown that the aggregation substance appears as a layer of hairlike structures. Using direct and indirect immunogold technique, transmission electron microscopy and high resolution scanning electron microscopy we investigated the appearance and distribution of the aggregation substance. The hairs increase in number with increasing exposure to sex pheromones (maximum density: 1300/m2). We show that these structures are unequally distributed over the cell surface, even if the cells were induced by sex pheromones for a long period of time. Statistical analysis of the unequal distribution indicates that aggregation substance is incorporated into pre-existing old cell-walls and that this incorporation shows a saturation ca. 40 min after addition of sex pheromones.Abbreviations cAD1 sex pheromone specific for plasmid pAD1 - cPD1 sex pheromone specific for plasmid pPD1 - FESEM field emission scanning electron microscope - pAD1 conjugative plasmid specifically transferred in the presence of cAD1 - pPD1 conjugative plasmid specifically transferred in the presence of cPD1 - TEM transmission electron microscope  相似文献   

12.
Production of bacteriocin Bc-48 by Enterococcus faecalis S-48 is encoded by the conjugative plasmid pMB1, which is approximately 90 kb and also responds to sex pheromones of E. faecalis OG1X. Mutants harboring deleted forms of this plasmid (pMB1-del, 75 kb) have lost both the phenotype Bc-48 (production and immunity) and the clumping response. The conjugal transfer of pMB1 to E. faecalis OG1X results in the acquisition by this strain of both bacteriocin production and immunity and also the clumping response. In the transconjugants isolated, the bacteriocinogenic trait is associated with a smaller plasmid (52 kb), which we call pMB1-1. The relationship among plasmids pMB1, pMB1-del, and pMB1-1 has been demonstrated by DNA hybridization. Plasmid pMB1-1 has been transferred with high frequency to E. faecalis mutants cured of Bc-48 production (carrying pMB1-del), conferring to them the Bc-48 trait and clumping response. In the transconjugants from a second mating, pMB1-1 and pMB1-del coexist without appreciable segregation.  相似文献   

13.
Enterococcus faecalis MC4 harbors a 130 kb conjugative, pheromone (cCF10)-responding plasmid, pAMS1, conferring chloramphenicol, streptomycin and tetracycline resistances. A plasmid-borne class IIa bacteriocin (MC4-1) determinant and cognate immunity gene were present, but not expressed in MC4. However, pAMS1 transfer to E. faecalis JH2-2 (but not to the non-isogenic OG1SS) generated the surprising ability to express bacteriocin activity against the plasmid donor, MC4. The bacteriocin target spectrum includes E. faecalis, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, and Listeria monocytogenes. Those donors unable to express bacteriocin or immunity could protect themselves from the "retrocidal" behavior of transconjugants by a switch to bacteriocin resistance at a frequency of approximately 10(-3). Reversion to sensitivity occurred at a relatively high frequency, suggestive of involvement of a phase variation event. These observations concerning a conjugative plasmid with novel "retrocidal" properties, coupled with a defense mechanism independent of plasmid-borne immunity functions, may relate to phenomena exploiting regulatory features with broader ecological and evolutionary implications.  相似文献   

14.
In short matings between two donor strains with distinguishable isogenic conjugative plasmids (derivatives of pAD1), only the strain preexposed to the sex pheromone cAD1 behaved as a donor.  相似文献   

15.
The sex pheromone system of Enterococcus faecalis is responsible for the clumping response of a plasmid carrying donor strain with a corresponding plasmid free recipient strain due to the production of sex pheromones by the recipient strain. The clumping response is mediated by a surface material (called aggregation substance) which is synthesized upon addition of sex pheromones to the cultures. Here we show that after induction a dense layer of hairlike structures is formed on the cell wall of the bacteria. These hairlike structures are responsible for the cell-cell contact which leads to the aggregation of cells. Formation of these structures was specific, only occurring after the addition of homologous sex pheromone.Abbreviations cAD1 sex pheromone specific for plasmid pAD1 - cPD1 sex pheromone specific for plasmid pPD1 - CW cell wall - pAD1 conjugative plasmid specifically transferred in the presence of cAD1 - pPD1 conjugative plasmid specifically transferred in the presence of cPD1 - PBS 10 mM Na-phosphate pH 7.5, 0.85% NaCl  相似文献   

16.
The effect of synthetic sex pheromone on pheromone-inducible conjugation between the isogenic Enterococcus faecalis strains OG1RF and OG1SS was investigated in (i) Todd-Hewitt broth medium and (ii) intestinal mucus isolated from germ-free rats. In broth, the presence of synthetic pheromone cCF10 had no detectable effect on the transfer kinetics observed for the tetracycline resistance encoding plasmid pCF10. In mucus, presence of the same pheromone significantly increased the transfer efficiency observed during the first 2 h of conjugation, while the effect was less pronounced later in the experiment. We suggest that due to differences in diffusion rates and medium-binding of the pheromones, the effect of the synthetic cCF10 was immediately dominated by the effect of pheromones produced by the recipient E. faecalis strain in broth, while this happened later in mucus.  相似文献   

17.
Enterococcus faecalis S-48 produces a peptide antibiotic, AS-48, and a bacteriocin, Bc-48. We have isolated mutants that lack these inhibitory characteristics. Further analysis of the mutants indicates that a plasmid of 56 kilobases (pMB2) may harbor the genes for AS-48. In conjugation experiments, pMB2 has been transferred into a plasmid-free OG1X strain of E. faecalis. The OG1X(pMB2) transconjugant produces the antibiotic AS-48 in solid medium, and the MIC of AS-48 for this strain is the same as that of the donor strain.  相似文献   

18.
Enterococcus faecalis 226 NWC, isolated from natural whey cultures utilized as starter in water-buffalo Mozzarella cheese manufacture, produces a bacteriocin, designated Enterocin 226 NWC, which is inhibitory to Listeria monocytogenes. Plasmid analysis of E. faecalis 226 NWC showed a single 5.2-kb plasmid, pEF226. In conjugation experiments, pEF226 was transferred into a plasmid-free strain of E. faecalis JH2-2. The transfer required direct cell-to-cell contact and was not inhibited by DNase. The identity of conjugation was confirmed by digestion with SmaI restriction endonuclease and subsequent pulsed-field gel electrophoresis (PFGE) of the genomic DNA of E. faecalis 226, E. faecalis JH2-2 and of the isolates after the mating. The data indicate that the ability of E. faecalis 226 NWC to produce the bacteriocin is linked to the 5.2-kb conjugative plasmid pEF226.  相似文献   

19.
Oxalate-degrading Enterococcus faecalis   总被引:2,自引:0,他引:2  
An oxalate-degrading Enterococcus faecalis was isolated from human stools under anaerobic conditions. The bacteria required a poor nutritional environment and repeated subculturing to maintain their oxalate-degrading ability. The E. faecalis produced 3 proteins (65, 48, and 40 kDa) that were not produced by non-oxalate-degrading E. faecalis as examined by SDS-PAGE. Antibodies against oxalyl-coenzyme A decarboxylase (65 kDa) and formyl-coenzyme A transferase (48 kDa) obtained from Oxalobacter formigenes (an oxalate-degrading anaerobic bacterium in the human intestine) reacted with 2 of the proteins (65 and 48 kDa) from the E. faecalis as examined by Western blottings. This is the first report on the isolation of oxalate-degrading facultative anaerobic bacteria from humans.  相似文献   

20.
Enterococci are the third leading cause of hospital associated infections and have gained increased importance due to their fast adaptation to the clinical environment by acquisition of antibiotic resistance and pathogenicity traits. Enterococcus faecalis harbours a pathogenicity island (PAI) of 153 kb containing several virulence factors including the enterococcal surface protein (esp). Until now only internal fragments of the PAI or larger chromosomal regions containing it have been transferred. Here we demonstrate precise excision, circularization and horizontal transfer of the entire PAI element from the chromosome of E. faecalis strain UW3114. This PAI (ca. 200 kb) contained some deletions and insertions as compared to the PAI of the reference strain MMH594, transferred precisely and integrated site-specifically into the chromosome of E. faecalis (intergenic region) and Enterococcus faecium (tRNAlys). The internal PAI structure was maintained after transfer. We assessed phenotypic changes accompanying acquisition of the PAI and expression of some of its determinants. The esp gene is expressed on the surface of donor and both transconjugants. Biofilm formation and cytolytic activity were enhanced in E. faecalis transconjugants after acquisition of the PAI. No differences in pathogenicity of E. faecalis were detected using a mouse bacteraemia and a mouse peritonitis models (tail vein and intraperitoneal injection). A 66 kb conjugative pheromone-responsive plasmid encoding erm(B) (pLG2) that was transferred in parallel with the PAI was sequenced. pLG2 is a pheromone responsive plasmid that probably promotes the PAI horizontal transfer, encodes antibiotic resistance features and contains complete replication and conjugation modules of enterococcal origin in a mosaic-like composition. The E. faecalis PAI can undergo precise intra- and interspecies transfer probably with the help of conjugative elements like conjugative resistance plasmids, supporting the role of horizontal gene transfer and antibiotic selective pressure in the successful establishment of certain enterococci as nosocomial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号