首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of herbicide management of genetically modified herbicide-tolerant (GMHT) beet, maize and spring oilseed rape on the abundance and diversity of soil-surface-active invertebrates were assessed. Most effects did not differ between years, environmental zones or initial seedbanks or between sugar and fodder beet. This suggests that the results may be treated as generally applicable to agricultural situations throughout the UK for these crops. The direction of the effects was evenly balanced between increases and decreases in counts in the GMHT compared with the conventional treatment. Most effects involving a greater capture in the GMHT treatments occurred in maize, whereas most effects involving a smaller capture were in beet and spring oilseed rape. Differences between GMHT and conventional crop herbicide management had a significant effect on the capture of most surface-active invertebrate species and higher taxa tested in at least one crop, and these differences reflected the phenology and ecology of the invertebrates. Counts of carabids that feed on weed seeds were smaller in GMHT beet and spring oilseed rape but larger in GMHT maize. In contrast, collembolan detritivore counts were significantly larger under GMHT crop management.  相似文献   

2.
A functional group approach was developed for plant and invertebrate assemblages from UK arable fields to assess the variation in functional composition of these highly disturbed, managed systems. Data were taken from the Farm-Scale Evaluations (FSE) of genetically modified herbicide-tolerant (GMHT) crops where the impact of management of the GMHT crop has been assessed for winter and spring sown oilseed rape, beet and maize. Twenty plant and 36 invertebrate functional groups were defined according to trophic behaviour and traits that affect resource capture, quality and availability. The functional composition of the plant community was significantly affected by season of sowing, the type of crop sown and, to a lesser extent, herbicide management. The invertebrate community composition was also affected by crop type and sowing season, but not by management. Resource and consumer groups were positively related, and data provide strong evidence for top-down control of herbivore populations. Two main interaction groups were identified within the arable food web: one between omnivores, generalist predators and detritivores, which are positively associated with monocots, and one between omnivores, parasitoids, sap feeders and leaf chewers, which have a stronger association with dicots. Although management has an impact on within-field arable biodiversity, crop type and sowing season have an overriding effect on the functional composition of plant and invertebrate assemblages in arable systems.  相似文献   

3.
The effects of the management of genetically modified herbicide-tolerant (GMHT) crops on the abundances of aerial and epigeal arthropods were assessed in 66 beet, 68 maize and 67 spring oilseed rape sites as part of the Farm Scale Evaluations of GMHT crops. Most higher taxa were insensitive to differences between GMHT and conventional weed management, but significant effects were found on the abundance of at least one group within each taxon studied. Numbers of butterflies in beet and spring oilseed rape and of Heteroptera and bees in beet were smaller under the relevant GMHT crop management, whereas the abundance of Collembola was consistently greater in all GMHT crops. Generally, these effects were specific to each crop type, reflected the phenology and ecology of the arthropod taxa, were indirect and related to herbicide management. These results apply generally to agriculture across Britain, and could be used in mathematical models to predict the possible long-term effects of the widespread adoption of GMHT technology. The results for bees and butterflies relate to foraging preferences and might or might not translate into effects on population densities, depending on whether adoption leads to forage reductions over large areas. These species, and the detritivore Collembola, may be useful indicator species for future studies of GMHT management.  相似文献   

4.
The Farm Scale Evaluations of genetically modified herbicide-tolerant crops (GMHT) were conducted in the UK from 2000 to 2002 on beet (sugar and fodder), spring oilseed rape and forage maize. The management of the crops studied is described and compared with current conventional commercial practice. The distribution of field sites adequately represented the areas currently growing these crops, and the sample contained sites operated at a range of management intensities, including low intensity. Herbicide inputs were audited, and the active ingredients used and the rates and the timings of applications compared well with current practice for both GMHT and conventional crops. Inputs on sugar beet were lower than, and inputs on spring oilseed rape and forage maize were consistent with, national averages. Regression analysis of herbicide-application strategies and weed emergence showed that inputs applied by farmers increased with weed densities in beet and forage maize. GMHT crops generally received only one herbicide active ingredient per crop, later and fewer herbicide sprays and less active ingredient (for beet and maize) than the conventional treatments. The audit of inputs found no evidence of bias.  相似文献   

5.
Over the past 40 years there have been marked shifts in arable farmland management that are widely believed to have had a considerable impact on flowering plants and invertebrates and the small mammals and birds that rely upon them. It is not yet possible to predict the dynamics of plants and invertebrates either with past or future changes in farmland management. This study investigates whether a basic invertebrate classification, formed of broad trophic groups, can be used to describe interactions between invertebrates and their resource plants and evaluate management impacts for genetically modified, herbicide-tolerant (GMHT) and conventional herbicide management in both spring- and winter-sown oilseed rape. It is argued that the analyses validate trophic-based approaches for describing the dynamics of invertebrates in farmland and that linear models might be used to describe the changes in invertebrate trophic group abundance in farmland when driven by primary producer abundance or biomass and interactions between invertebrates themselves. The analyses indicate that invertebrate dynamics under GMHT management are not unique, but similar to conventional management occurring over different resource ranges, and that dynamics differed considerably between spring- and winter-sown oilseed rape. Thus, herbicide management was of much lower impact on trophic relationships than sowing date. Results indicate that invertebrate dynamics in oilseed rape are regulated by a combination of top-down and bottom-up trophic processes.  相似文献   

6.
We compared the seedbanks, seed rains, plant densities and biomasses of weeds under two contrasting systems of management in beet, maize and spring oilseed rape. Weed seedbank and plant density were measured at the same locations in two subsequent seasons. About 60 fields were sown with each crop. Each field was split, one half being sown with a conventional variety managed according to the farmer's normal practice, the other half being sown with a genetically modified herbicide-tolerant (GMHT) variety, with weeds controlled by a broad-spectrum herbicide. In beet and rape, plant densities shortly after sowing were higher in the GMHT treatment. Following weed control in conventional beet, plant densities were approximately one-fifth of those in GMHT beet. In both beet and rape, this effect was reversed after the first application of broad-spectrum herbicide, so that late-season plant densities were lower in the GMHT treatments. Biomass and seed rain in GMHT crops were between one-third and one-sixth of those in conventional treatments. The effects of differing weed-seed returns in these two crops persisted in the seedbank: densities following the GMHT treatment were about 20% lower than those following the conventional treatment. The effect of growing maize was quite different. Weed density was higher throughout the season in the GMHT treatment. Late-season biomass was 82% higher and seed rain was 87% higher than in the conventional treatment. The difference was not subsequently detectable in the seedbank because the total seed return was low after both treatments. In all three crops, weed diversity was little affected by the treatment, except for transient effects immediately following herbicide application.  相似文献   

7.
We compared the effects of the management of genetically modified herbicide-tolerant (GMHT) and conventional beet, maize and spring oilseed rape on 12 weed species. We sampled the seedbank before and after cropping. During the season we counted plants and measured seed rain and biomass. Ratios of densities were used to calculate emergence, survival, reproduction and seedbank change. Treatments significantly affected the biomass of six species in beet, eight in maize and five in spring oilseed rape. The effects were generally consistent, with biomass lower in GMHT beet and spring oilseed rape and higher in GMHT maize. With few exceptions, emergence was higher in GMHT crops. Subsequent survival was significantly lowered for eight species in beet and six in spring oilseed rape in the GMHT treatments. It was increased for five species in maize and one in spring oilseed rape. Significant effects on seedbank change were found for four species. However, for many species in beet and spring oilseed rape (19 out of 24 cases), seed densities were lower in the seedbank after GMHT cropping. These differences compounded over time would result in large decreases in population densities of arable weeds. In maize, populations may increase.  相似文献   

8.
The effects of management of genetically modified herbicide-tolerant (GMHT) crops on adjacent field margins were assessed for 59 maize, 66 beet and 67 spring oilseed rape sites. Fields were split into halves, one being sown with a GMHT crop and the other with the equivalent conventional non-GMHT crop. Margin vegetation was recorded in three components of the field margins. Most differences were in the tilled area, with fewer smaller effects mirroring them in the verge and boundary. In spring oilseed rape fields, the cover, flowering and seeding of plants were 25%, 44% and 39% lower, respectively, in the GMHT uncropped tilled margins. Similarly, for beet, flowering and seeding were 34% and 39% lower, respectively, in the GMHT margins. For maize, the effect was reversed, with plant cover and flowering 28% and 67% greater, respectively, in the GMHT half. Effects on butterflies mirrored these vegetation effects, with 24% fewer butterflies in margins of GMHT spring oilseed rape. The likely cause is the lower nectar supply in GMHT tilled margins and crop edges. Few large treatment differences were found for bees, gastropods or other invertebrates. Scorching of vegetation by herbicide-spray drift was on average 1.6% on verges beside conventional crops and 3.7% beside GMHT crops, the difference being significant for all three crops.  相似文献   

9.
The UK Farm Scale Evaluations (FSEs) have shown that the use of broad spectrum herbicides on genetically modified herbicide-tolerant (GMHT) crops can have dramatic effects on weed seed production compared to management of conventional varieties. Here, we use FSE data and information on bird diets to determine how GMHT cropping might change the food resources available to farmland birds. More than 60 fields of each of four crops, spring- and winter-sown oilseed rape, beet and maize, were split, one half being sown with a conventional variety, the other with a GMHT variety. Seed rain from weeds known to be important in the diets of 17 granivorous farmland bird species was measured under the two treatments. In beet and spring oilseed rape, rain of weed seeds important in the diets of 16 bird species was significantly reduced in GMHT compared to conventional halves; for no species did it increase. In winter oilseed rape, rain of weed seeds important in the diets of 10 species was significantly reduced in GMHT halves; for only one species did it increase significantly. By contrast, in maize, rain of weed seeds important in the diets of seven species was significantly greater in GMHT halves; for no species was it reduced. Treatment effects for the total weed seed energy available to each bird species were very similar to those for seed rain alone. Measuring the effects on individual bird species was outside the scope of this study. Despite this, these results suggest that should beet, spring and winter rape crops in the UK be largely replaced by GMHT varieties and managed as in the FSEs, this would markedly reduce important food resources for farmland birds, many of which declined during the last quarter of the twentieth century. By contrast, GMHT maize would be beneficial to farmland birds.  相似文献   

10.
We evaluated the effects of the herbicide management associated with genetically modified herbicide-tolerant (GMHT) winter oilseed rape (WOSR) on weed and invertebrate abundance and diversity by testing the null hypotheses that there is no difference between the effects of herbicide management of GMHT WOSR and that of comparable conventional varieties. For total weeds, there were few treatment differences between GMHT and conventional cropping, but large and opposite treatment effects were observed for dicots and monocots. In the GMHT treatment, there were fewer dicots and monocots than in conventional crops. At harvest, dicot biomass and seed rain in the GMHT treatment were one-third of that in the conventional, while monocot biomass was threefold greater and monocot seed rain almost fivefold greater in the GMHT treatment than in the conventional. These differential effects persisted into the following two years of the rotation. Bees and Butterflies that forage and select for dicot weeds were less abundant in GMHT WORS management in July. Year totals for Collembola were greater under GMHT management. There were few other treatment effects on invertebrates, despite the marked effects of herbicide management on the weeds.  相似文献   

11.
The Farm Scale Evaluations (FSEs) showed that genetically modified herbicide-tolerant (GMHT) cropping systems could influence farmland biodiversity because of their effects on weed biomass and seed production. Recently published results for winter oilseed rape showed that a switch to GMHT crops significantly affected weed seedbanks for at least 2 years after the crops were sown, potentially causing longer-term effects on other taxa. Here, we seek evidence for similar medium-term effects on weed seedbanks following spring-sown GMHT crops, using newly available data from the FSEs. Weed seedbanks following GMHT maize were significantly higher than following conventional varieties for both the first and second years, while by contrast, seedbanks following GMHT spring oilseed rape were significantly lower over this period. Seedbanks following GMHT beet were smaller than following conventional crops in the first year after the crops had been sown, but this difference was much reduced by the second year for reasons that are not clear. These new data provide important empirical evidence for longer-term effects of GMHT cropping on farmland biodiversity.  相似文献   

12.
Ali Arab  Gina M. Wimp 《Oecologia》2013,173(2):331-341
While numerous studies have examined the effects of increased primary production on higher trophic levels, most studies have focused primarily on the grazing food web and have not considered the importance of alternate prey channels. This has happened despite the fact that fertilization not only increases grazing herbivore abundance, but other types of consumers such as detritivores that serve as alternate prey for generalist predators. Alternate prey channels can sustain generalist predators at times when prey abundance in the grazing food web is low, thus increasing predator densities and the potential for trophic cascades. Using arthropod data from a fertilization experiment, we constructed a hierarchical Bayesian model to examine the direct and indirect effects of plant production and alternate prey channels on predators in a salt marsh. We found that increased plant production positively affected the density of top predators via effects on lower trophic level herbivores and mesopredators. Additionally, while the abundance of algivores and detritivores positively affected mesopredators and top predators, respectively, the effects of alternate prey were relatively weak. Because previous studies in the same system have found that mesopredators and top predators rely on alternate prey such as algivores and detritivores, future studies should examine whether fertilization shifts patterns of prey use by predators from alternate channels to the grazing channel. Finally, the hierarchical Bayesian model used in this study provided a useful method for exploring trophic relationships in the salt marsh food web, especially where causal relationships among trophic groups were unknown.  相似文献   

13.
Pollinators are beneficial for many wild and crop plants. As a mass-flowering crop, oilseed rape has received much focus in terms of its pollination requirements but despite a threefold increase in area of cultivation of this crop in Ireland over the past 5 years, little is known about its pollination here. We surveyed the flower visiting insects found in commercial winter oilseed rape fields and evaluated the importance of different pollinator groups, investigated the contribution of insect pollination to oilseed rape seed production, and estimated the economic value of insect pollination to the crop at a national level. Our data showed that winter oilseed rape is visited by a wide variety of insect species, including the honeybee, bumblebees, solitary bees, and hoverflies. The honeybee, Eristalis hoverflies and bumblebees (especially Bombus sensu stricto and B. lapidarius) were the best pollinators of winter oilseed rape based on the number of pollen grains they carry, visitation rates per flower and their relative abundance per field. Exclusion of pollinators resulted in a 27 % decrease in the number of seeds produced, and a 30 % decrease in seed weight per pod in winter crops, with comparable values from a spring oilseed rape field also. The economic value of insect pollination to winter oilseed rape was estimated as €2.6 million per annum, while the contribution to spring oilseed rape was €1.3 million, resulting in an overall value of €3.9 million per annum. We can suggest the appropriate conservation and management of both honeybees and wild pollinators in agricultural areas to ensure continued provision of pollination services to oilseed rape, as a decrease in insect numbers has the potential to negatively influence crop yields.  相似文献   

14.
One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0.9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of management.  相似文献   

15.
Farmland biodiversity and food webs were compared in conventional and genetically modified herbicide-tolerant (GMHT) crops of beet (Beta vulgaris L.), maize (Zea mays L.) and both spring and winter oilseed rape (Brassica napus L.). GMHT and conventional varieties were sown in a split-field experimental design, at 60-70 sites for each crop, spread over three starting years beginning in 2000. This paper provides a background to the study and the rationale for its design and interpretation. It shows how data on environment, field management and the biota are used to assess the current state of the ecosystem, to define the typical arable field and to devise criteria for selecting, sampling and auditing experimental sites in the Farm Scale Evaluations. The main functional and taxonomic groups in the habitat are ranked according to their likely sensitivity to GMHT cropping, and the most responsive target organisms are defined. The value of the seedbank as a baseline and as an indicator of historical trends is proposed. Evidence from experiments during the twentieth century is analysed to show that large changes in field management have affected sensitive groups in the biota by ca. 50% during a year or short run of years--a figure against which to assess any positive or negative effects of GMHT cropping. The analysis leads to a summary of factors that were, and were not, examined in the first 3 years of the study and points to where modelling can be used to extrapolate the effects to the landscape and the agricultural region.  相似文献   

16.
Previous syntheses have identified the key roles that phylogeny, body size, and trophic level play in determining arthropod stoichiometry. To date, however, detritivores have been largely omitted from such syntheses, despite their importance in nutrient cycling, biodiversity, and food web interactions. Here, we report on a compiled database of the allometry and nutritional stoichiometry (N and P) of detritivorous arthropods. Overall, both N and P content for detritivores varied among major phylogenetic lineages. Detritivore N content was similar to the N content of herbivores, but below that of predators. By contrast, detritivore P content was independent of trophic level. Contrary to previous reports, neither nutrient varied with body size. This analysis places detritivores in the context of related herbivores and predators, and as such, sets the stage for future investigations into the causes and consequences of elemental (mis)matches between detritivores and their detrital resources. Holly M. Martinson and Katie Schneider are co-first author.  相似文献   

17.
Abstract. 1. The effect of the removal of Timarcha lugens (Chrysomelidae), one of the main herbivores of Hormathophylla spinosa (Cruciferae), on the abundance of co-occurring phytophagous insects, the abundance of non-phytophagous arthropods (detritivores, predators, and parasitoids), and the structure and diversity of the entire arthropod community, was studied for 3 years (1999–2001).
2. There was competition between T. lugens and co-occurring herbivores; the removal of T. lugens was correlated with an increase in the abundance of sap-suckers, flower-feeders, and, above all, folivores.
3. Timarcha lugens also had an indirect effect on arthropods belonging to other trophic levels; the abundance of predators increased significantly after the removal of T. lugens .
4. Community composition was affected by the experimental removal. In addition, the diversity of the overall community increased after removal of T. lugens .
5. The study demonstrated experimentally that T. lugens has a significant effect not only on other species belonging to the same trophic level, but also on the abundance of species belonging to higher trophic levels, and, consequently, on the entire structure and diversity of the complex community in which it is immersed.  相似文献   

18.
Crop rotation systems in organic and conventional farming systems differ in crop types, management and duration. However, changes in arthropod communities over the entire rotation system are poorly understood, as many studies have surveyed only single years or have not covered the entire rotation period. Here, we describe changes in arthropods in two contrasting systems at a split organic‐conventional farm: an 8‐year organically managed rotation with five crops and a 5‐year conventionally managed rotation with three crops. Arthropods were classified into three functional groups, representing epigeal predators, foliar predators/parasitoids and herbivores/pollinators. Epigeal predators were particularly reduced by soil tillage which occurred annually in the conventional rotation, but was intermittent in the organic. Arthropods were most abundant on the conventional rotation, but most taxonomically diverse on the organic. In the conventional system, all functional groups showed a cyclical change in their taxonomic composition that closely matched the crop rotation sequence, whereas in the organic rotation, the cycle was less clear. Whilst the current year's crop type was the major determinant of arthropod community composition, there was a significant “lag effect” for many taxa from the preceding year's crop. Our results suggest that both the amounts of soil tillage (e.g., in no‐till systems) and crop rotation order have major impacts on arthropods in agroecosystems. Rotations with excessive soil tillage are likely to reduce the abundance of some groups of beneficial arthropods, especially epigeal predators.  相似文献   

19.
Ecological intensification of agriculture implies managing ecological processes to improve performance of agricultural systems. However, impacts on relevant ecological functions such as insect pollination from other crop management factors are poorly explored. Pest insects and crop resources such as water availability can directly affect crop yields, but it is unknown if there are indirect effects through effects on insect pollination. With a factorial experiment, we examined how irrigation and control of pollen beetles affected crop attractiveness and pollinator visitation in an open-pollinated spring oilseed rape cultivar. We studied how irrigation and pest control modified the production of flowers and nectar in oilseed rape, and if this in turn affected the flower-visitation of honey bees and bumble bees. Pest control increased the number of oilseed rape flowers by 69%, and the amount of nectar per flower with 36%, but for the latter only in non-irrigated plots. Furthermore, we found higher pollinator densities in plots with reduced pollen beetle densities. Pest control also reduced the number of non-legitimate flower visits, suggesting higher pollination efficiency in plots with reduced pollen beetle densities. We show that crop management affects the value of mass-flowering crops as a resource for pollinating insects. Development of pest control tools that are harmless to pollinators could increase the value of flowering crops as food resources for pollinating insects.  相似文献   

20.
Habitat homogenization is one of the most important drivers of change in riverine fauna. Therefore, the aim of this study was to determine whether habitat homogenization influences the trophic structure of fish assemblages in tropical streams. We sampled 78 streams located in pasture and crop lands to examine habitat variables and fish. Principal coordinates analysis, canonical analysis of principal coordinates, and a distance-based test for homogeneity of multivariate dispersions revealed two groups of streams, designated homogeneous and heterogeneous, based on the habitat variables. We determined trophic guilds according to the frequency and biovolume of food items. Seven guilds were identified: aquatic insectivores, terrestrial insectivores, detritivores, herbivores, omnivores, algivores, and detritivores–algivores. Homogeneous streams showed higher abundance and biomass of aquatic insectivores, detritivores, and algivores. Heterogeneous streams showed greater diversity of trophic guilds and higher abundance and biomass of terrestrial insectivores and herbivores than homogeneous streams. Our results demonstrate that trophic structure is influenced by habitat condition. Additionally, the riparian canopy and nearshore vegetation have a modulating role in the trophic structure of stream fishes due to their influence on resource supply and promotion of the physical heterogeneity of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号