首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insufficient stand establishment at early growth stages in wheat (Triticum aestivum L.) due to drought stress is a major problem that limits overall efficiency and yield of crop. Priming of seed is an effective method for raising seed performance and improving tolerance of crops to abiotic stresses especially drought. The seeds of two local wheat cultivars (Kohistan-97 and Pasban-90) were soaked in distilled water or sodium selenate solutions of 25, 50, 75, and 100 μM for 1/2 or 1 h at 25 °C and later re-dried to their original moisture levels before sowing. One-hour priming significantly increased root length stress tolerance index, dry matter stress tolerance index, and total biomass of seedlings; however, no significant effect of changing duration of Se seed priming was observed on plant height stress tolerance index and shoot/root ratio. Among cultivars, Kohistan-97 was found to be more responsive to Se seed treatment as 1 h priming at 100 μM significantly increased its total biomass by 43 % as compared to control treatment. Although biomass of seedlings was not affected with Se seed priming under normal conditions, but it increased significantly with increase in rates of Se under drought stress conditions. One-hour priming at 75 μM increased the total sugar content and total free amino acids in both wheat cultivars. A more significant decrease in soluble proteins of seedlings was observed by 1 h priming than 1/2 h priming under drought stress conditions.  相似文献   

2.
We have investigated the water use efficiency of whole plants and selected leaves and allocation patterns of three wheat cultivars (Mexipak, Nesser and Katya) to explore how variation in these traits can contribute to the ability to grow in dry environments. The cultivars exhibited considerable differences in biomass allocation and water use efficiency. Cultivars with higher growth rates of roots and higher proportions of biomass in roots (Nesser and Katya) also had higher leaf growth rates, higher proportions of their biomass as leaves and higher leaf area ratios. These same cultivars had lower rates of transpiration per unit leaf area or unit root weight and higher biomass production per unit water use. They also had higher ratios of photosynthesis to transpiration, and lower ratios of intercellular to external CO2 partial pressure. The latter resulted from large differences in stomatal conductance associated with relatively small differences in rates of photosynthesis. There was little variation between cultivars in response to drought, and differences in allocation pattern and plant water use efficiency between cultivars as found under well-watered conditions persisted under dry conditions. At the end of the non-watered treatment, relative growth rates and transpiration rates decreased to similar values for all cultivars. High ratios of photosynthesis to transpiration, and accordingly high biomass production per unit of transpiration, is regarded as a favourable trait for dry environments, since more efficient use of water postpones the decrease in plant water status.  相似文献   

3.
Understanding how growth and development of durum wheat cultivars respond to drought could provide a basis to develop crop improvement programmes in drought-affected tropical and subtropical countries. A greenhouse experiment was conducted to study the responses of five durum wheat cultivars to moisture stress at different developmental phases. Phenology, total dry matter (TDM), relative growth rate (RGR), leaf area ratio (LAR), net assimilation rate (NAR), leaf weight ratio (LWR), specific leaf area (SLA) and shoot:root ratio were compared. Pre-anthesis moisture stress delayed phenological development, whereas post-anthesis moisture stress accelerated it. TDM accumulation rate was different between drought-resistant and susceptible cultivars. RGR and its components changed with age and moisture availability. Drought-resistant cultivars had a high RGR in favourable periods of the growing season and a low RGR during moisture stress. In contrast, the drought-susceptible cultivar (Po) showed an opposite trend. LAR explained the differences in RGR (r=0.788) best, whereas the relationship between NAR and RGR was not significant. Even though both LWR and SLA were important factors determining the potential growth rate, LWR was of major importance to describe cultivar differences in LAR, and consequently in RGR. The drought-resistant cultivars Omrabi-5 and Boohai showed vigorous root development and/or a low shoot:root ratio. It is concluded that biomass allocation is the major factor explaining variation in RGR among the investigated durum wheat cultivars.  相似文献   

4.
We have investigated the water use efficiency of whole plants and selected leaves and allocation patterns of three wheat cultivars (Mexipak, Nesser and Katya) to explore how variation in these traits can contribute to the ability to grow in dry environments. The cultivars exhibited considerable differences in biomass allocation and water use efficiency. Cultivars with higher growth rates of roots and higher proportions of biomass in roots (Nesser and Katya) also had higher leaf growth rates, higher proportions of their biomass as leaves and higher leaf area ratios. These same cultivars had lower rates of transpiration per unit leaf area or unit root weight and higher biomass production per unit water use. They also had higher ratios of photosynthesis to transpiration, and lower ratios of intercellular to external CO2 partial pressure. The latter resulted from large differences in stomatal conductance associated with relatively small differences in rates of photosynthesis. There was little variation between cultivars in response to drought, and differences in allocation pattern and plant water use efficiency between cultivars as found under well-watered conditions persisted under dry conditions. At the end of the non-watered treatment, relative growth rates and transpiration rates decreased to similar values for all cultivars. High ratios of photosynthesis to transpiration, and accordingly high biomass production per unit of transpiration, is regarded as a favourable trait for dry environments, since more efficient use of water postpones the decrease in plant water status.  相似文献   

5.
A field experiment was carried out to analyse the growth oflettuce, onion and red beet in terms of: (a) canopy architecture,radiation interception and absorption; (b) efficiency of conversionof absorbed radiation into biomass; and (c) dry matter partitioning.Growth analysis, total solar radiation interception, PAR interceptionand absorption by the crop canopy, ground cover, maintenancerespiration of onion bulbs and red beet storage roots were measured.Models for different leaf angle distribution and ground coverwere used to simulate light transmission by the crop canopy. The three crops are shown to have contrasting growth patternsfrom both a morphological and a physiological point of view.Lettuce showed very high light interception and growth afterthe early growth stages but, throughout the growth cycle, thisleafy crop showed the lowest radiation use efficiency due tothe respirational cost of the high leaf area. Onion showed alower early relative growth rate than lettuce and red beet.This was due partly to the low light interception per unit leafarea in the later stages of growth and partly to the low initialradiation use efficiency compared with the other two crops.On the other hand, thanks to more uniform distribution of theradiation inside the canopy, to the earlier termination of leafdevelopment and to the very low level of bulb respiration, onionshowed high radiation use efficiency and was able to producea large amount of dry matter. Red beet leaf posture and canopystructure resulted in high light interception and absorption.Its radiation use efficiency was lower than that of onion, partlyperhaps because of the more adverse distribution of the interceptedradiation fluxes within the canopy and partly because of thehigh respiration cost of a continuous dry-matter allocationto the leaves. However, this crop can accumulate a very largeamount of dry matter as leaf blade development and storage rootgrowth can both continue almost indefinitely, providing continuouslyavailable sinks. Ground cover gave a good estimate of the PAR interception onlyat low values of light interception but, in general, it underestimatedPAR interception in all three crops. Ratios between attenuationcoefficients established by considering PAR or total solar radiationand LAI or ground cover were calculated. Lettuce,Lactuca sativa L. var.crispa ; onion,Allium cepa L.; red beet; Beta vulgaris L. var.conditiva ; growth analysis; light interception and absorption; canopy architecture; ground cover; radiation use efficiency; maintenance respiration rate; dry matter distribution  相似文献   

6.
Yield of eight wheat cultivars was evaluated under rainfed and irrigated conditions in a Mediterranean environment. Variation in grain yield resulted from variation in both aboveground biomass production and in harvest index. Under rainfed compared to irrigated conditions, grain yield, biomass and days to heading were decreased, whereas harvest index was increased. Grain yield of the different cultivars under rainfed conditions correlated with that under irrigated conditions in one of the two years. Among cultivars, harvest index under rainfed and irrigated conditions were correlated in both years.Water was used more efficiently for biomass production, and equally efficiently for grain production, under irrigated compared to rainfed conditions. Under rainfed conditions, crop water use efficiency was higher for cultivars developed for rainfed environments than for those developed for high-rainfall or irrigated environments. Cultivars with low-rainfall target environments had the lowest evapotranspiration under rainfed conditions. Under rainfed conditions, differences between the cultivar groups in crop water use efficiency corresponded with trends in water use efficiency of individual plants and with the ratio of photosynthesis to transpiration, measured on plants grown in a growth room.Early in the season, water was used more efficiently for biomass production at high sowing densities than at low sowing densities. Through faster biomass production and ground cover a smaller proportion of the evapotranspired water was lost in soil evaporation and a larger proportion was transpired. However, the net effect was a greater water use in the early phases of growth and consequently a lower water availability later in the season, leading to similar yields regardless of sowing density.  相似文献   

7.
The balance of energy flow from light absorption into biomass was investigated under simulated natural light conditions in the diatom Phaeodactylum tricornutum and the green alga Chlorella vulgaris. The energy balance was quantified by comparative analysis of carbon accumulation in the new biomass with photosynthetic electron transport rates per absorbed quantum, measured both by fluorescence quenching and oxygen production. The difference between fluorescence- and oxygen-based electron flow is defined as 'alternative electron cycling'. The photosynthetic efficiency of biomass production was found to be identical for both algae under nonfluctuating light conditions. In a fluctuating light regime, a much higher conversion efficiency of photosynthetic energy into biomass was observed in the diatom compared with the green alga. The data clearly show that the diatom utilizes a different strategy in the dissipation of excessively absorbed energy compared with the green alga. Consequently, in a fluctuating light climate, the differences between green algae and diatoms in the efficiency of biomass production per photon absorbed are caused by the different amount of alternative electron cycling.  相似文献   

8.
Increases in total dry-matter yield during bulb growth in well-irrigatedonion crops were correlated with the total solar radiation interceptedby the leaf canopy. The mean efficiency of conversion of interceptedradiation to dry-matter was 1.58 g MJ–1. However, efficiencieswere significantly different between seasons and in two yearsout of three they were lower for spring-sown crops than forautumn-sown crops. The lower efficiencies coincided with periodsof high mean temperature and irradiance. The percentage of thetotal irradiance intercepted by the canopy during bulbing (1%)was increased by higher plant densities, earlier sowing andin later-maturing cultivars. It was higher in spring-sown thanin autumn-sown crops especially at low plant densities. Theduration of bulb growth was negatively correlated with 1% andwith the mean air temperature during bulb growth. Consequentlyautumn-sown crops had a longer duration of bulb growth thanspring-sown crops and produced exceptionally high bulb yieldsat high plant densities. Non-irrigated crops had a lower 1%and a shorter duration of bulb growth than irrigated crops,and a lower conversion efficiency in a season of high mean temperatureand irradiance. Onion, Allium cepa L., bulb, irradiance, efficiency, partitioning, plant population, temperature, irrigation, growth-analysis, water-stress, leaf-area-index  相似文献   

9.
Summary Dry-matter accumulation, and concentration and uptake of nitrogen increased with increasing level of nitrogen at all the stages of crop growth. The differences in nitrogen concentration due to nitrogen levels were greatest at panicle initiation stage and started becoming narrower with the advancement in crop age. Split application of nitrogen with its heavier fractions at tillering and panicle initiation stages either through soil alone or soil+foliage (1/3+1/3+1/3) resulted in higher dry-matter accumulation, and higher nitrogen concentration and uptake than other methods. The crop, on an average, removed 61 kg N/ha. Plants accumulated nearly 15% of the total absorbed nitrogen, up to tillering, 50% up to panicle initiation and 85–90% up to heading. Proportionately lesser nitrogen uptake and dry-matter accumulation at post-heading stage is an indicative of a major constraint for production efficiency of rainfed-upland rice culture.  相似文献   

10.
‘Integrated growth analysis’ (emphasizing aspectsof crop and plant structure) and ‘light conversion analysis’(stressing the efficiency of interception and photosyntheticconversion of light) have been used to investigate the wintergrowth of different cultivars of butterhead and crisphead typesof glasshouse lettuce. Measurements from ‘Ambassador’ (large-framed butterhead),‘Renate’ (medium-sized butterhead) and ‘Cristallo’(crisphead) were made, statistical progressions were fittedto the primary data and hence estimates of all the analyticalcomponents were derived. Curves for crop growth rate, like those for most other components,followed a generally similar pattern for all three cultivars.In integrated growth analysis, the biomass curve for Ambassadorlay above the curves for the other cultivars. The weight advantagewas initially 60 per cent and it persisted with only a smallreduction (to 40 per cent) until the final harvest. Relativegrowth rate varied little between cultivars because differencesobserved in leaf area ratio were complementary to those seenin net assimilation rate. In light conversion analysis, differences in light interceptingefficiency between cultivars were not statistically significant,though Ambassador attained full interception 4 days earlierthan Renate and 6 days earlier than Cristallo. Differences inlight utilizing efficiency were small and non-significant exceptduring the post-rosette stage when the value for Renate waslower than that of either Ambassador or Cristallo. Deviationsaround the fitted curves were correlated with fluctuations inthe light regime. An assessment is made of the utility and limitations of thetwo procedures. It is concluded that both approaches can assistin analyzing the rate of dry matter production in crops or plantstands. Integrated growth analysis is advantageous when theneed arises to treat individual and population-based attributessimultaneously, while light conversion analysis provides a meansof explicitly incorporating the primary environmental variableinfluencing growth. Lactuca sativa L., lettuce cultivars, growth analysis, crop growth rate, relative growth rate, light interception, light utilization  相似文献   

11.
Tosserams  Marcel  Visser  Andries  Groen  Mark  Kalis  Guido  Magendans  Erwin  Rozema  Jelte 《Plant Ecology》2001,154(1-2):195-210
Due to anthropogenic influences, both solar UV-B irradiance at the earth's surface and atmospheric [CO2] are increasing. To determine whether effects of CO2 enrichment on faba bean (cv. Minica) growth are modified by UV-B radiation, the effects of enhanced [CO2] on growth and photosynthetic characteristics, were studied at four UV-B levels. Faba bean was sensitive to enhanced UV-B radiation as indicated by decreases in total biomass production. Growth stimulation by CO2 enrichment was greatly reduced at the highest UV-B level. [CO2] by UV-B interactions on biomass accumulation were related to loss of apical dominance. Both [CO2] and UV-B radiation affected biomass partitioning, UV-B effects being most pronounced. Effects of [CO2] and UV-B on faba bean growth were time-dependent, indicating differential sensitivity of developmental stages. [CO2] and UV-B effects on photosynthetic characteristics were rather small and restricted to the third week of treatment. CO2 enrichment induced photosynthetic acclimation, while UV-B radiation decreased light-saturated photosynthetic rate. It is concluded that the reduction in biomass production cannot be explained by UV-B-induced effects on photosynthesis.  相似文献   

12.
During the recent years, wide varieties of methodologies have been developed up to the level of commercial use to measure photosynthetic electron transport by modulated chlorophyll a-in vivo fluorescence. It is now widely accepted that the ratio between electron transport rates and new biomass (P (Fl)/B (C)) is not fixed and depends on many factors that are also taxonomically variable. In this study, the balance between photon absorption and biomass production has been measured in two phycobilin-containing phototrophs, namely, a cyanobacterium and a cryptophyte, which differ in their antenna organization. It is demonstrated that the different antenna organization exerts influence on the regulation of the primary photosynthetic reaction and the dissipation of excessively absorbed radiation. Although, growth rates and the quantum efficiency of biomass production of both phototrophs were comparable, the ratio P (Fl)/B (C) was twice as high in the cryptophyte in comparison to the cyanobacterium. It is assumed that this discrepancy is because of differences in the metabolic regulation of cell growth. In the cryptophyte, absorbed photosynthetic energy is used to convert assimilated carbon directly into proteins and lipids, whereas in the cyanobacterium, the photosynthetic energy is preferentially stored as carbohydrates.  相似文献   

13.
Summary Studies revealed that the total dry-matter yield and the uptake of P and K by the crop at harvest increased due to nitrogen application. Split application of nitrogen through soil alone or soil + foliage was found to be more conducive to dry-matter production and P and K uptake than application of full dose of nitrogen at sowing. Among split application treatments, nitrogen applied through soil alone seemed to be more favourable to P and K uptake than splits involving nitrogen application in the similar fractions through soil + foliage. Cultivars ‘Bala’ and ‘Padma’ on an average, removed almost equal quantity of P (around 16 kg P/ha) from the soil. The average K removal by ‘Bala’ and ‘Padma’ was 76 and 73 kg K/ha, respectively. The translocation of the absorbed P and K to reproductive sink (grain) was markedly reduced in rainfed up-land conditions. Both the cultivars translocated nearly 60 per cent of the absorbed P and 10 per cent of the absorbed K to their grains.  相似文献   

14.
Radiation interception, dry matter accumulation, flower and pod production and yield were measured for a semi-leafless pea (Pisum sativum) breeding selection (BS3) on three contrasting sites. Differences in soil moisture availability were largely responsible for a three-fold difference in yield between sites. Radiation interception was related to dry matter production by calculating photosynthetic efficiencies. In the absence of lodging, crop canopies converted intercepted radiation into dry matter with constant efficiency (?) throughout the season; under conditions of moisture stress ? was reduced. Serious lodging during the post-flowering period on one site resulted in a mean seasonal photosynthetic efficiency (?) 17% lower than ?. The ability of the pea crop canopy to intercept radiation was related also to yield components.  相似文献   

15.
Effects of sodium fertiliser on growth, water status and yield of sugar beet crops were measured in 1974 and 1975. Sodium increased leaf area index early in the growing period, the water content of the leaves and the final yields of root dry matter and sugar in both years. In 1974, it increased leaf relative water content and diffusive conductance under conditions of moderate soil moisture deficit in August but had no effect in June or September when soil moisture deficits were low. There was also no effect in June 1975 but later, when there was a severe drought, sodium decreased leaf water potential. Further evidence of an interaction between sodium and soil moisture on leaf water status was obtained from a reappraisal of results of field experiments made between 1965 and 1976. Sodium increased sugar yield through at least two different physiological mechanisms; it improved interception of radiation by the crop by increasing leaf area early in the season and it improved the efficiency of leaves under conditions of moderate water stress.  相似文献   

16.
Crop biomass production is a function of the efficiencies with which sunlight can be intercepted by the canopy and then converted into biomass. Conversion efficiency has been identified as a target for improvement to enhance crop biomass and yield. Greater conversion efficiency in modern soybean [Glycine max (L.) Merr.] cultivars was documented in recent field trials, and this study explored the physiological basis for this observation. In replicated field trials conducted over three successive years, diurnal leaf gas exchange and photosynthetic CO2 response curves were measured in 24 soybean cultivars with year of release dates (YOR) from 1923 to 2007. Maximum photosynthetic capacity, mesophyll conductance and nighttime respiration have not changed consistently with cultivar release date. However, daily carbon gain was periodically greater in more recently released cultivars compared with older cultivars. Our analysis suggests that this difference in daily carbon gain primarily occurred when stomatal conductance and soil water content were high. There was also evidence for greater chlorophyll content and greater sink capacity late in the growing season in more recently released soybean varieties. Better understanding of the mechanisms that have improved conversion efficiency in the past may help identify new, promising targets for the future.  相似文献   

17.
Bioenergy production is driving modifications to native plant species for use as novel biofuel crops. Key aims are to increase crop growth rates and to enhance conversion efficiency by reducing biomass recalcitrance to digestion. However, selection for these biofuel‐valuable traits has potential to compromise plant defenses and alter interactions with pests and pathogens. Insect‐vectored plant viruses are of particular concern because perennial crops have potential to serve as virus reservoirs that influence regional disease dynamics. In this study, we examined relationships between growth rates and biomass recalcitrance in five switchgrass (Panicum virgatum) populations, ranging from near‐wildtype to highly selected cultivars, in a common garden trial. We measured biomass accumulation rates and assayed foliage for acid detergent lignin, neutral detergent fiber, in vitro neutral detergent fiber digestibility and in vitro true dry matter digestibility. We then evaluated relationships between these traits and susceptibility to a widely distributed group of aphid‐transmitted Poaceae viruses (Luteoviridae: Barley and cereal yellow dwarf viruses, B/CYDVs). Virus infection rates and prevalence were assayed with RT‐PCR in the common garden, in greenhouse inoculation trials, and in previously established switchgrass stands across a 300‐km transect in Michigan, USA. Aphid host preferences were quantified in a series of arena host choice tests with field‐grown foliage. Contrary to expectations, biomass accumulation rates and foliar digestibility were not strongly linked in switchgrass populations we examined, and largely represented two different trait axes. Natural B/CYDV prevalence in established switchgrass stands ranged from 0% to 28%. In experiments, susceptibility varied notably among switchgrass populations and was more strongly predicted by potential biomass accumulation rates than by foliar digestibility; highly selected, productive cultivars were most virus‐susceptible and most preferred by aphids. Evaluation and mitigation of virus susceptibility of new biofuel crops is recommended to avert possible unintended consequences of biofuel production on regional pathogen dynamics.  相似文献   

18.
羊草叶片气体交换参数对温度和土壤水分的响应   总被引:15,自引:4,他引:15       下载免费PDF全文
 采用生长箱控制的方法研究了羊草(Leymus chinensis)幼苗叶片光合参数对5个温度和5个水分梯度的响应和适应。结果表明:轻度、中度土壤干旱并没有限制羊草叶片的生长,对气体交换参数亦无显著影响,反映了羊草幼苗对土壤水分胁迫的较高耐性。叶片生物量以26 ℃时最大,其它依次为23 ℃、20 ℃、29 ℃和32 ℃。温度升高使气孔导度和蒸腾速率增加, 却使光合速率和水分利用效率降低。水分和温度对叶片生物量、光合速率、气孔导度和蒸腾速率存在显著的交互作用,表明高温加强了干旱对叶片生长和气体交换的影响, 降低了羊草对土壤干旱的适应能力。高温和干旱的交互作用将显著减少我国半干旱地区草原的羊草生产力。  相似文献   

19.
The dwarf shrub Indigofera spinosa , indigenous to arid and semi-arid rangelands of northeastern Africa, is an important food source for livestock. Proper management of the shrub requires improved understanding of the effects of grazing and climatic variability on aboveground dry-matter allocation. Between 1986 and 1990, we compared the temporal variability of aboveground dry-matter allocation to different plant biomass compartments. We also compared dry-matter transfers between components; total live biomass to litter, standing dead to litter and live biomass to standing dead between continuously grazed and an ungrazed treatments. Partitioning of combined total dry-matter production among different structural organs (called allocation ratio) is influenced by phenological changes, episodic rainfall and her-bivory. Dry-matter production in the grazed treatment responded more markedly to episodic rainfall events more than in the ungrazed treatment. Exclusion of grazers failed to improve the relative growth rate (RGR) of shrub biomass, while grazing improved it. RGR declined in the ungrazed treatment following the accumulation of standing dead dry-matter, while m the grazed treatment it declined following the shedding of leaves. The shrub allocated more to total live biomass than to standing dead. Greater reduction of total live allocation ratio in the grazed than in the ungrazed treatment occurred during a dry year. The ungrazed treatment had higher standing dead allocation ratio than did the grazed treatment. Plants transferred more dry-matter from total live biomass compartment to litter, than from standing dead to or from total live biomass to standing dead independent of treatment. The rates of transfer were higher in the ungrazed than in the grazed treatment. The results suggest that I spinosa has evolved to respond to climatic variability and grazmgbyallocating dry allocating dry-matter differently between various compartments.  相似文献   

20.
Measurements on protected lettuce crops have been used to assesstwo new procedures for analysing the rate of dry-matter productionin crops or plant stands. ‘Integrated growth analysis’brings together two traditionally distinct treatments of growthanalysis by resolving crop growth rate (CGR) into stand biomassand the relative growth rate of individual plants. ‘Lightconversion analysis’ resolves CGR as the product of incidentlight receipt, efficiency of light interception by leaves, andefficiency of utilization of intercepted light in dry-matterproduction. Observations from winter lettuce trials were used to fit statisticalprogressions to the primary data and to obtain instantaneously-derivedestimates of all of the analytical components. Trials in threesuccessive years yielded similar patterns in time for the componentsof each of the analytical procedures, giving confidence in theirvalidity. In light conversion analysis, changes in CGR were due mainlyto incident light, which varied threefold, and to interceptingefficiency, which rose from a low initial value to full interceptionat hearting; the efficiency of utilization of light varied lessdramatically, with the value at hearting being about twice thatat planting. In integrated growth analysis a 30 per cent increasein CGR due to CO2 enrichment, and a 5 per cent increase dueto lower daily minimum temperature, could each be coherentlyresolved into variations in biomass, leaf area ratio and netassimilation rate. In different ways it is concluded that both of these approachescan assist in analysing growth and in identifying the optionsavailable for improving crop yield. Lactuca sativa L., lettuce, growth analysis, crop growth rate, relative growth rate, light interception, light utilization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号