首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turan NN  Basgut B  Aypar E  Ark M  Iskit AB  Cakici I 《Life sciences》2008,82(17-18):928-933
Short ischemic episodes increase tolerance against subsequent severe ischemia in the heart. Nitropropionate (3-NP), an irreversible inhibitor of succinic dehydrogenase of the mitochondrial complex II, was shown to induce protective effect against ischemic brain injury. The aim of this study was to investigate the possible protective effect of 3-NP on regional ischemia in preconditioned rat heart in vivo. Hearts were assigned into three groups: first, in order to induce ischemic preconditioning (IP) 5 min ischemia separated by 10 min reperfusion protocol was used; second, non-preconditioned group was used as control; and third, 3-NP (20 mg/kg, i.p.) was injected 3 h before the surgical procedure in order to induce chemical preconditioning. In all these groups, 30 min regional ischemia was followed by 60 min reperfusion. Infarct size, bax expression, number of ventricular ectopic beats (VEB), duration of ventricular tachycardia (VT) and ventricular fibrillation (VF) were significantly decreased in ischemic preconditioning and 3-NP pretreatment groups, whereas bcl-2 values were not markedly changed in these groups during occlusion period. These results showed that in the anesthetized rat heart 3-NP induced chemical preconditioning by decreasing infarct size, number of VEB, duration of VT and VF. Protective effect is associated with via decreased production of bax protein expression.  相似文献   

2.
3.
Complement component C3, the central player in the complement cascade and the pro-inflammatory cytokine IL-1β is expressed by activated glial cells and may contribute to neurodegeneration. This study examines the regulation of the expression of C3 by IL-1β in astroglial cells focusing on the role of the upstream kinase MKK6, p38-α MAPK, and C/EBP-β isoforms (LAP1, LAP2, or LIP) in astroglial cells. Activation of human astroglial cell line, U373 with IL-1β, led to the induction of C3 mRNA and protein expression as determined by real-time RT-PCR and Western blot analysis, respectively. This induction was suppressed by the pharmacological inhibitor of p38 MAPK (i.e., SB202190-HCl), suggesting the involvement of p38 MAPK in C3 gene expression. IL-1β also induced C3 promoter activity in U373 cells in a MAP kinase- and C/EBP-β-dependent manner. Cotransfection of C3 luciferase reporter construct with constitutively active form of the upstream kinase in the MAP kinase cascade, that is, MKK6 (the immediate upstream activator of p38 kinase) resulted in marked stimulation of the promoter activity, whereas overexpression of a dominant negative forms of MKK6 and p38α MAPK inhibited C3 promoter activity. Furthermore, a mutant form of C/EBP-β, LAP(T235A) showed reduction in IL-1β-mediated C3 promoter activation. These results suggest that the p38α, MAPK, and MKK6 play prominent roles in IL-1β and C/EBP-β-mediated C3 gene expression in astrocytes.  相似文献   

4.
Hypoxia-inducible factor 1 (HIF-1) mediates adaptive responses to reduced oxygen availability by regulating gene expression. A critical cell-autonomous adaptive response to chronic hypoxia controlled by HIF-1 is reduced mitochondrial mass and/or metabolism. Exposure of HIF-1-deficient fibroblasts to chronic hypoxia results in cell death due to excessive levels of reactive oxygen species (ROS). HIF-1 reduces ROS production under hypoxic conditions by multiple mechanisms including: a subunit switch in cytochrome c oxidase from the COX4-1 to COX4-2 regulatory subunit that increases the efficiency of complex IV; induction of pyruvate dehydrogenase kinase 1, which shunts pyruvate away from the mitochondria; induction of BNIP3, which triggers mitochondrial selective autophagy; and induction of microRNA-210, which blocks assembly of Fe/S clusters that are required for oxidative phosphorylation. HIF-1 is also required for ischemic preconditioning and this effect may be due in part to its induction of CD73, the enzyme that produces adenosine. HIF-1-dependent regulation of mitochondrial metabolism may also contribute to the protective effects of ischemic preconditioning. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

5.
Previous in vivo and in vitro analyses have shown that both necrosis and apoptosis are involved in neuronal cell death induced by energy impairment caused by mitochondrial dysfunction. However, little is known about the key factors that determine whether the cells undergo necrosis or apoptosis. In the present study, we analyzed neuronal cell death induced by 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II, in a primary culture system of rat cortical neurons. The neurons were maintained for a week in coculture with astroglial cells, and then they were treated with 3-NP in the presence or absence of astroglial cells. As judged from morphological (Hoechst 33258 staining) and biochemical (DNA fragmentation and caspase activation) analyses, the cortical neurons appeared to die through an apoptotic process after 3-NP treatment in the presence of astroglial cells. However, caspase inhibitors did not suppress the 3-NP-induced cell death, suggesting the involvement of a caspase-independent pathway of 3-NP-induced neuronal cell death in the presence of astroglial cells. On the other hand, 3-NP induced necrotic cell death within 1 day in the absence of astroglial cells, following a rapid decrease in intracellular ATP level. These changes were attenuated by the presence of astroglial cells or the addition of astroglial conditioned medium. These results suggest that astroglial trophic support influences the alteration of the intracellular energy state in 3-NP-treated neurons and consequently determines the type of neuronal cell death, apoptosis or necrosis.  相似文献   

6.
Hypoxic preconditioning can play a significant neuroprotective role. However, it has not been employed clinically because of safety concerns. To find a safer preconditioning stimulus that is both practical and effective, we investigated whether ginkgolides are capable of preconditioning as hypoxia to protect C6 cells against ischemic injury. We demonstrated that both ginkgolides (37.5microg/mL) and hypoxia (1% O(2) for 16h) can significantly increase cell viabilities and expression of phosphorylated glycogen synthase kinase (p-GSK), phosphorylated extracellular signal-regulated kinase (p-ERK), hypoxia-inducible factor-1 alpha (HIF-1alpha) and erythropoietin (EPO) in ischemic cells. The inhibitors of mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3'-kinase (PI3K) significantly but not completely reduced the enhanced expression of these proteins and cell viabilities induced by ginkgolides and hypoxic preconditioning. These indicated that ginkgolides could mimic hypoxic preconditioning by increasing expression of HIF-1alpha as well as its target protein EPO and that the ginkgolides and hypoxic preconditioning role might be partly mediated by the activation of the p42/p44-mitogen-activated protein kinase and phosphatidylinositol 3'-kinase/AKT/glycogen synthase kinase 3beta pathways. The similar tendency in the changes of protein expression, cell viabilities and responses to MAPK or PI3K inhibitors of the cells treated with ginkgolides and hypoxia suggests that ginkgolides and hypoxic preconditioning might operate by similar mechanisms. The findings also imply that ginkgolides might have the potential for clinical use to prevent injury in high-risk conditions.  相似文献   

7.
Oxidative stress, associated with a variety of disorders including neurodegenerative diseases, results from accumulation of reactive oxygen species (ROS). Oxidative stress is not only responsible for neuron apoptosis, but can also provoke astroglial cell death. Numerous studies indicate that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuron survival, but nothing is known regarding the action of PACAP on astroglial cell survival. Thus, the purpose of the present study was to investigate the potential glioprotective effect of PACAP on H(2)O(2)-induced astrocyte death. Pre-treatment of cultured rat astrocytes with nanomolar concentrations of PACAP prevented cell death provoked by H(2)O(2) (300 μM), whereas vasoactive intestinal polypeptide was devoid of protective activity. The effect of PACAP on astroglial cell survival was abolished by the type 1 PACAP receptor antagonist, PACAP6-38. The protective action of PACAP was blocked by the protein kinase A inhibitor H89, the protein kinase C inhibitor chelerythrine and the mitogen-activated protein (MAP)-kinase kinase (MEK) inhibitor U0126. PACAP stimulated glutathione formation, and blocked H(2)O(2)-evoked ROS accumulation and glutathione content reduction. In addition, PACAP prevented the decrease of mitochondrial activity and caspase 3 activation induced by H(2)O(2). Taken together, these data indicate for the first time that PACAP, acting through type 1 PACAP receptor, exerts a potent protective effect against oxidative stress-induced astrocyte death. The anti-apoptotic activity of PACAP on astrocytes is mediated through the protein kinase A, protein kinase C and MAPK transduction pathways, and can be accounted for by inhibition of ROS-induced mitochondrial dysfunctions and caspase 3 activation.  相似文献   

8.
Xu FF  Liu XH  Cai LR 《生理学报》2004,56(5):609-614
本工作旨在研究缺氧预处理(hypoxic preconditioning,HPC)对于心肌细胞外信号调节激酶(extracellular signal-regulated proteinkinases,ERK)活性、缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)表达的影响,及其在缺氧复氧诱导心肌细胞损伤中的作用。通过在培养的SD乳鼠心肌细胞缺氧/复氧(H/R)模型上,观察HPC对于24h后H/R诱导心肌细胞损伤的影响,以台盼蓝排斥实验检测心肌细胞存活率、以TUNEL法检测细胞凋亡、并用荧光素染料Hoechst33258测定心肌细胞凋亡率:制备心肌细胞蛋白提取物,以磷酸化的ERK1/2抗体测定ERK1/2活性,以抗HIF-1α抗体检测HIF-1α的表达,并观察ERKs的上游激酶(MEK1/2)抑制剂PD98059对于HPC诱导的ERKs磷酸化、HIF-1α表达以及心肌细胞保护作用的影响,并分析细胞损伤与ERK1/2活性、HIF-1α表达量之间的相互关系。结果 显示缺氧复氧造成心肌细胞损伤,HPC可以增加心肌细胞H/R后存活率,降低凋亡率,并激活ERKll2,诱导HIF-1α表达:细胞凋亡与ERKs活性、HIF-1α表达量之间存在负相关,即ERKs活化、HIF-1α表达与预防细胞损伤有关:而ERKs活性与HIF-1α表达量之间存在正相关,ERKs的上游激酶MEK抑制剂PD98059可以消除HPC诱导的ERKs磷酸化、HIF-1α表达和心肌细胞保护作用。由此得出的结论是HPC可以提高乳鼠心肌细胞对于H/R的耐受性,其机制涉及ERKs介导的HIF-1α表达。  相似文献   

9.
Astrocytes have emerged as active players in the innate immune response triggered by various types of insults. Recent literature suggests that mitochondria are key participants in innate immunity. The present study investigates the role of ischemia-induced innate immune response on p65/PGC-1α mediated mitochondrial dynamics in C6 astroglial cells. OGD conditions induced astroglial differentiation in C6 cells and increased the expression of hypoxia markers; HIF-1α, HO-1 and Cox4i2. OGD conditions resulted in induction of innate immune response in terms of expression of TNFR1 and TLR4 along with increase in IL-6 and TNF-α levels. OGD conditions resulted in decreased expression of I-κB with a concomitant increase in phos-p65 levels. The expression of PGC-1α, a key regulator of mitochondrial biogenesis, was also increased. Immunochemical staining suggested that phos-p65 and PGC-1α was co-localized. Studies on mitochondrial fusion (Mfn-1) and fission (DRP1) markers revealed shift toward fission. In addition, mitochondrial membrane potential decreased with increased DNA degradation and apoptosis confirming mitochondrial fission under OGD conditions. However, inhibition of phos-p65 by MG132 reduced the co-localization of phos-p65/ PGC-1α and significantly increased the Mfn-1 expression. The findings demonstrate the involvement of TNFR1 and TLR4 mediated immune response followed by interaction between phos-p65 and PGC-1α in promoting fission in C6 cells under hypoxic condition.  相似文献   

10.
Heme oxygenase (HO) catalyzes the breakdown of heme to iron, carbon monoxide (CO), and biliverdin, the latter being further reduced to bilirubin (BR). A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with reactive oxygen species (ROS) and oxidative damage. The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by the mitochondrial toxin 3-nitropropionic acid (3-NP) in primary cultures of cerebellar granule neurons (CGNs). Toxicity of 3-NP is associated with ROS production, and this metabolic toxin has been used to mimic pathological conditions such as Huntington's disease. We found that cell death caused by 3-NP exposure was exacerbated by inhibition of HO with tin mesoporphyrin (SnMP). In addition, HO-1 up-regulation induced by the exposure to cobalt protoporphyrin (CoPP) before the incubation with 3-NP, prevented the cell death and the increase in ROS induced by 3-NP. Interestingly, addition of SnMP to CoPP-pretreated CGNs exposed to 3-NP, abolished the protective effect of CoPP suggesting that HO activity was responsible for this protective effect. This was additionally supported by the fact that CORM-2, a CO-releasing molecule, and BR, were able to protect against cell death and the increase in ROS induced by 3-NP. Our data clearly show that HO-1 elicits in CGNs a neuroprotective action against the neurotoxicity of 3-NP and that CO and BR may be involved, at least in part, in this protective effect. The present results increase our knowledge about the role of HO-1 in neuropathological conditions.  相似文献   

11.
12.
We hypothesized that the neuroprotective role of the standardized Ginkgo biloba (Ginkgoaceae) extract EGb 761 under hypoxic conditions might be associated with its function to increase HIF-1 activity based on the fact that oxygen availability is crucial for cellular metabolism and viability and that HIF-1 plays an essential role in cellular oxygen homeostasis under hypoxic conditions. In this study, we therefore investigated the effects of ginkgolides, the main constituent of the non-flavone fraction of EGb 761, on the content and activity of HIF-1alpha, a key factor to determine HIF-1 activity, in hypoxic PC12 cells induced by cobalt chloride. Our data demonstrated that ginkgolides have a significant protective role against hypoxia-induced injury in the PC12 cells. The findings also strongly support our hypothesis that the protective role of ginkgolides is due to the up-regulation of HIF-1alpha protein expression and modification through the ginkgolides-induced activation of the p42/p44 MAPK pathway. In addition, it was evident that ginkgolides could significantly increase the HIF-1 DNA binding activity, which might also be associated with the protective effects of ginkgolides by promoting the expression of target genes of HIF-1 under hypoxic conditions.  相似文献   

13.
Ursodeoxycholic acid (UDCA) has been shown to be a strong modulator of the apoptotic threshold in both hepatic and nonhepatic cells. 3-Nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, appears to cause apoptotic neuronal cell death in the striatum, reminiscent of the neurochemical and anatomical changes associated with Huntington's disease (HD). This study was undertaken (a) to characterize further the mechanism by which 3-NP induces apoptosis in rat neuronal RN33B cells and (b) to determine if and how the taurine-conjugated UDCA, tauroursodeoxycholic acid (TUDCA), inhibits apoptosis induced by 3-NP. Our results indicate that coincubation of cells with TUDCA and 3-NP was associated with an approximately 80% reduction in apoptosis (p < 0.001), whereas neither taurine nor cyclosporin A, a potent inhibitor of the mitochondrial permeability transition (MPT), inhibited cell death. Moreover, TUDCA, as well as UDCA and its glycine-conjugated form, glycoursodeoxycholic acid, prevented mitochondrial release of cytochrome c (p < 0.001), which probably accounts for the observed inhibition of DEVD-specific caspase activity and poly(ADP-ribose) polymerase cleavage. 3-NP decreased mitochondrial transmembrane potential (p < 0.001) and increased mitochondrial-associated Bax protein levels (p < 0.001). Coincubation with TUDCA was associated with significant inhibition of these mitochondrial membrane alterations (p < 0.01). The results suggest that TUDCA inhibits 3-NP-induced apoptosis via direct inhibition of mitochondrial depolarization and outer membrane disruption, together with modulation of Bax translocation from cytosol to mitochondria. In addition, cell death by 3-NP apparently occurs through pathways that are independent of the MPT.  相似文献   

14.
The retina is the most metabolically active tissue in the human body and hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. The aim of this study is to determine whether muscarinic receptor agonist pilocarpine, a classic antiglaucoma drug, possesses neuroprotection against cobalt chloride (CoCl2)-mimetic hypoxia-induced apoptosis of rat retinal ganglion cells (RGC-5 cells) and its underlying mechanisms. Cell viability was determined by Cell Counting Kit-8 assay and apoptosis was examined by annexin V and mitochondrial membrane potential (MMP) assays. Expressions of hypoxia-induced factor-1α (HIF-1α), p53, and BNIP3 were investigated by quantitative real-time PCR and western blot analysis. After treatment of 200 μM CoCl2 for 24 h, RGC-5 cells showed a marked decrease of cell viability by approximately 30%, increased apoptosis rate and obvious decline in MMP, which could largely be reversed by the pretreatment of 1 μM pilocarpine mainly via the activation of muscarinic receptors. Meanwhile, pretreatment of 1 μM pilocarpine could significantly prevent CoCl2-induced HIF-1α translocation from cytoplasm to nucleus and down-regulate the expression of HIF-1α, p53, and BNIP3. These studies demonstrated that pilocarpine had effective protection against hypoxia-induced apoptosis in RGCs via muscarinic receptors and HIF-1α pathway. The findings suggest that HIF-1α pathway as a “master switch” may be used as a therapeutic target in the cholinergic treatment of glaucoma.  相似文献   

15.
16.
17.
18.
Hypoxia-inducible factor-1 (HIF-1) could ameliorate renal ischemia reperfusion injury (IRI), but the underlying mechanism remains elusive. In the current study, we aim to investigate the possible role of prolyl hydroxylases inhibitor dimethyloxalylglycine (DMOG) in inducing delayed preconditioning-like effects against IRI. Mice were divided into four groups (n = 6): sham group; IRI group; DMOG group: pretreated with DMOG 24 h before IRI; and GW274150 + DMOG group: pretreated with DMOG followed by iNOS inhibitor GW274150 treatment 24 h before IRI. The results showed that the protein level of HIF-1a and the expression of its targets inducible nitric oxide synthase (iNOS), erythropoietin, and heme oxygenase-1 were obviously increased after administration of DMOG. Histological analysis of renal function showed improvement in tubulointerstitial injury due to ischemia by delayed preconditioning with DMOG. GW274150 antagonized the delayed renal protection afforded by DMOG as reflected by deteriorated renal dysfunction, aggravated histological injury, increased renal cell apoptosis, and increased vimentin expression in the kidney. In conclusion, our data demonstrate that DMOG pretreatment induces delayed renal protection against IRI in mice and the beneficial effects are mitigated by pharmacological inhibition of iNOS, suggesting that the protective effects derived from HIF-1 activation via DMOG in the kidney are partially mediated by iNOS.  相似文献   

19.
20.
CpG oligodeoxynucleotides directly induce CXCR3 chemokines in human B cells   总被引:3,自引:0,他引:3  
CpG oligodeoxynucleotides (CpG ODN) are known to elicit Th1 immune responses via TLR9. However, the precise mechanisms through which B cells are involved in this phenomenon are not fully understood. We investigated the effect of CpG ODN on the induction of Th1-chemoattractant CXCR3 chemokines, IP-10, Mig, and I-TAC, in B cells. Cells from the RPMI 8226 human B cell line and human peripheral B cells were stimulated with three distinct classes of CpG ODN. As a result, CXCR3 chemokines were strongly up-regulated by CpG-B and CpG-C, but only weakly by CpG-A. Though CXCR3 chemokines are known to be induced by IFNs, blocking mAbs against IFN receptors did not inhibit their induction by CpG-B. Induction of CXCR3 chemokines was blocked by two NF-kappaB inhibitors and a p38 inhibitor. These results strongly suggest that CXCR3 chemokines are directly induced by CpG ODN via NF-kappaB- and p38-dependent pathways in human B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号