首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cel4 gene of Agaricus bisporus encodes a beta-mannanase   总被引:1,自引:0,他引:1  
Mannases have industrial uses in food and pulp industries, and their regulation may influence development of the mushrooms of commercially important basidiomycetes. We expressed an Agaricus bisporus cel4 cDNA, which encodes a mannanase, in Saccharomyces cerevisiae and Pichia pastoris. CEL4 had no detectable activity on cellulose or xylan. This gene is the first isolated from this economically important fungus to encode a mannanase. P. pastoris secreted about three times more CEL4 than S. cerevisiae. The removal of the cellulose-binding domain of CEL4 lowered the secreted specific activity by P. pastoris by approximately 97%. The genomic sequence of cel4 was isolated by screening a cosmid library of A. bisporus C54-carb8. The open reading frame was interrupted by 12 introns. The level of extracellular CEL4 increases dramatically at the postharvest stage in compost extracts of A. bisporus fruiting cultures. In laboratory liquid cultures of A. bisporus, the activity of CEL4 detected in the culture filtrate reached a maximum after 21 days. The levels of CEL4 broadly mirrored the levels of enzyme activity. In the Solka floc-bound mycelium, CEL4 protein showed a maximum after 2 to 3 weeks of culture and then declined. Changes in CEL4 activity during fruiting-body development suggest that hemicellulose utilization plays an important role in sporophore formation. The availability of the cloned gene will further studies of compost decomposition and the extracellular enzymes that fungi deploy in this process.  相似文献   

2.
A Coprinus cinereus peroxidase (CiP) was successfully expressed by the methylotrophic yeast Pichia pastoris. The 1095-bp gene encoding peroxidase from C. cinereus was cloned with a highly inducible alcohol oxidase (AOX1) promoter and integrated into the genome of P. pastoris. The recombinant CiP (rCiP) fused with the α-mating factor pre-pro leader sequence derived from Saccharomyces cerevisiae accumulated neither inside the cell nor within the wall, and were efficiently secreted into the culture medium. SDS-PAGE and immunoblot analysis revealed that the rCiP was not hyper-glycosylated and its α-factor signal sequence was correctly processed. It was also found that the kinetic properties of rCiP were similar to those of native CiP. In order to produce large amounts of rCiP, the high cell density cultivation of recombinant P. pastoris was carried out in a fermentor with fed-batch mode. The peroxidase activity obtained in a 5 l fermentor cultivation became about 6 times (1200 U/ml) higher than that in shake-flask cultures (200 U/ml).  相似文献   

3.
Trichoderma harzianum biotypes Th1, Th2, and Th3 produced volatile metabolites in vitro which had similar fungistatic effects on the growth of Agaricus bisporus. Metabolites present in agar colonized by these strains also inhibited mycelial growth of A. bisporus, although the reduction in growth was less in the presence of metabolites produced by biotype Th2 than that in the presence of metabolites produced by Th1 or Th3. A. bisporus produced metabolites in liquid culture that inhibited the growth of Th1 and Th3 but stimulated the growth of Th2. A compound(s) responsible for the inhibition and stimulation was extracted from A. bisporus culture filtrate and from compost-grown fruit bodies with n-butanol, but the identity of the compound(s) was not determined. We suggest that the stimulation of Th2 by metabolites produced by A. bisporus and the relatively low level of inhibition of A. bisporus by Th2 facilitate colonization of compost by both fungi. However, as compost colonization reaches a maximum, a change in the competitive balance in favor of Th2 results in the inhibition of fruit body production by A. bisporus and the devastating green mold epidemics affecting mushroom production.  相似文献   

4.

Background

The methylotrophic yeast, Pichia pastoris, offers the possibility to generate a high amount of recombinant proteins in a fast and easy way to use expression system. Being a single-celled microorganism, P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. A simple and direct method for the selection of high-producing clones can dramatically enhance the whole production process along with significant decrease in production costs.

Results

A visual method for rapid selection of high-producing clones based on mannanase reporter system was developed. The study explained that it was possible to use mannanase activity as a measure of the expression level of the protein of interest. High-producing target protein clones were directly selected based on the size of hydrolysis holes in the selected plate. As an example, the target gene (9elp-hal18) was expressed and purified in Pichia pastoris using this technology.

Conclusions

A novel methodology is proposed for obtaining the high-producing clones of proteins of interest, based on the mannanase reporter system. This system may be adapted to other microorganisms, such as Saccharomyces cerevisiae for the selection of clones.  相似文献   

5.
6.
Exendin-4 is a naturally occurring 39 amino acid peptide that is useful for the control of Type 2 diabetes. Recombinant Exendin-4, with an extra glycine at the carboxy-terminus (Exdgly), was expressed in the methylotropic yeast Pichia pastoris. A high proportion of the Exdgly molecules secreted into medium were found to be clipped, lacking the first two amino acids (His–Gly) from the N-terminus. Disruption of the P. pastoris homolog of the Saccharomyces cerevisiae dipeptidyl aminopeptidase (STE13) gene in Pichia genome resulted in a clone that expressed N-terminally intact Exdgly. Elimination of N-terminal clipping enhanced the yield and simplified the purification of Exdgly from P. pastoris culture supernatant.  相似文献   

7.

Background

Pichia pastoris is widely used as a production platform for heterologous proteins and model organism for organelle proliferation. Without a published genome sequence available, strain and process development relied mainly on analogies to other, well studied yeasts like Saccharomyces cerevisiae.

Results

To investigate specific features of growth and protein secretion, we have sequenced the 9.4 Mb genome of the type strain DSMZ 70382 and analyzed the secretome and the sugar transporters. The computationally predicted secretome consists of 88 ORFs. When grown on glucose, only 20 proteins were actually secreted at detectable levels. These data highlight one major feature of P. pastoris, namely the low contamination of heterologous proteins with host cell protein, when applying glucose based expression systems. Putative sugar transporters were identified and compared to those of related yeast species. The genome comprises 2 homologs to S. cerevisiae low affinity transporters and 2 to high affinity transporters of other Crabtree negative yeasts. Contrary to other yeasts, P. pastoris possesses 4 H+/glycerol transporters.

Conclusion

This work highlights significant advantages of using the P. pastoris system with glucose based expression and fermentation strategies. As only few proteins and no proteases are actually secreted on glucose, it becomes evident that cell lysis is the relevant cause of proteolytic degradation of secreted proteins. The endowment with hexose transporters, dominantly of the high affinity type, limits glucose uptake rates and thus overflow metabolism as observed in S. cerevisiae. The presence of 4 genes for glycerol transporters explains the high specific growth rates on this substrate and underlines the suitability of a glycerol/glucose based fermentation strategy. Furthermore, we present an open access web based genome browser http://www.pichiagenome.org.  相似文献   

8.
The fungus Agaricus bisporus is commercially grown for the production of edible mushrooms. This cultivation occurs on compost, but not all of this substrate is consumed by the fungus. To determine why certain fractions remain unused, carbohydrate degrading enzymes, water-extracted from mushroom-grown compost at different stages of mycelium growth and fruiting body formation, were analyzed for their ability to degrade a range of polysaccharides. Mainly endo-xylanase, endo-glucanase, β-xylosidase and β-glucanase activities were determined in the compost extracts obtained during mushroom growth. Interestingly, arabinofuranosidase activity able to remove arabinosyl residues from doubly substituted xylose residues and α-glucuronidase activity were not detected in the compost enzyme extracts. This correlates with the observed accumulation of arabinosyl and glucuronic acid substituents on the xylan backbone in the compost towards the end of the cultivation. Hence, it was concluded that compost grown A. bisporus lacks the ability to degrade and consume highly substituted xylan fragments.  相似文献   

9.
A 1,965-bp fragment encoding a poly(vinyl alcohol) dehydrogenase (PVADH) from Sphingopyxis sp. 113P3 was synthesized based on the codon bias of the methylotrophic yeast Pichia pastoris. The fragment was then amplified by polymerase chain reaction and inserted into the site between EcoRI and NotI sites in pPIC9K, which was under the control of the AOX1 promoter and α-mating factor signal sequence from Saccharomyces cerevisiae. The recombinant plasmid, designated as pPIC9K-PVADH, was linearized using SalI and transformed into P. pastoris GS115 by electroporation. The PVADH activity reached 55 U/mL in a shake flask and 902 U/mL in a 3-L bioreactor. Surprisingly, the sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and N-terminal sequencing indicated that the secreted PVADH was truncated, and it had only 548 amino acid residues (an 81-amino acid sequence from the secreted protein was cleaved). The optimum pH and temperature ranges for the truncated PVADH were 7.0–8.0 and 41–53 °C, respectively. The activation energy of the recombinant truncated PVADH was approximately 10.36 kcal/mol between 29 and 41 °C. Both Ca2+ and Mg2+ had stimulating effects on the activity of PVADH. With PVA1799 as the substrate, the truncated PVADH had a Michaelis constant (K m) of 1.89 mg/mL and a maximum reaction rate (V max) of 34.9 nmol/(min mg protein). To the best of our knowledge, this is the first report on the expression of PVADH in P. pastoris, and the achieved PVADH yield is the highest ever reported.  相似文献   

10.
Cloning, sequencing, and expression of the gene for soluble lysozyme of bacteriophage FMV from Gram-negative Pseudomonas aeruginosa bacteria were conducted in yeast cells. Comparable efficiency of two lysozyme expression variants (as intracellular or secreted proteins) was estimated in cells of Saccharomyces cerevisiae and Pichia pastoris. Under laboratory conditions, yeast S. cerevisiae proved to be more effective producer of phage lysozyme than P. pastoris, the yield of the enzyme in the secreted form being significantly higher than that produced in the intracellular form.  相似文献   

11.
Agaricus bisporus, grown under standard composting conditions, was evaluated for its ability to produce lignin-degrading peroxidases, which have been shown to have an integral role in lignin degradation by wood-rotting fungi. The activity of manganese peroxidase was monitored throughout the production cycle of the fungus, from the time of colonization of the compost through the development of fruit bodies. Characterization of the enzyme was done with a crude compost extract. Manganese peroxidase was found to have a pI of 3.5 and a pH optimum of 5.4 to 5.5, with maximal activity during the initial stages of fruiting (pin stage). The activity declined considerably with fruit body maturation (first break). This apparent developmentally regulated pattern parallels that observed for laccase activity and for degradation of radiolabeled lignin and synthetic lignins by A. bisporus. Lignin peroxidase activity was not detected in the compost extracts. The correlation between the activities of manganese peroxidase and laccase and the degradation of lignin in A. bisporus suggests significant roles for these two enzymes in lignin degradation by this fungus.  相似文献   

12.
Starter cultures of Candida tropicalis and Saccharomyces cerevisiae isolated from tchapalo were tested in pure culture and co-culture of four ratios [2:1, 25:4, 1:4, 2:3 (cells/cells)] for their ability to ferment sorghum wort to produce tchapalo. All the starters showed means growth rate between 0.043 and 0.101 h?1. Only C. tropicalis in pure culture showed growth rate lower than that of S. cerevisiae in single culture. During fermentation, according to total soluble solids depletion, yeast starters could be grouped in four different profiles. But in the beer produced, total soluble solids contents were statistically identical. The lowest values were obtained with co-culture C. tropicalis + S. cerevisiae in the ratios of 2:1 and 2:3. Starter cultures with large ratio of C. tropicalis produced a higher organic acids and 2-butanone than S. cerevisiae in pure culture. However, co-culture C. tropicalis + S. cerevisiae (2:1) was the alone starter which produced higher ethanol than S. cerevisiae in pure culture. The beers produced with C. tropicalis + S. cerevisiae (25:4), C. tropicalis + S. cerevisiae (1:4) and C. tropicalis were widely different from those produced with the others starter cultures.  相似文献   

13.
Summary The SUC 2 gene from Saccharomyces cerevisiae coding for the enzyme Invertase was cloned in Hansenula polymorpha under the control of the alcohol-oxidase (AOX) promoter of Pichia pastoris. The culture conditions for the Invertase production using a fed-batch culture were studied. More than 1,5 × 103 U/ml of Invertase (1 g/L) were found to be secreted to cellular periplasmic space. The scale up to 50 L of the fermentative process was done.  相似文献   

14.
Yeast Pichia pastoris is a widely used system for heterologous protein expression. However, post-translational modifications, especially glycosylation, usually impede pharmaceutical application of recombinant proteins because of unexpected alterations in protein structure and function. The aim of this study was to identify glycosylation sites on recombinant human platelet-derived growth factor-BB (rhPDGF-BB) secreted by P. pastoris, and investigate possible effects of O-linked glycans on PDGF-BB functional activity. PDGF-BB secreted by P. pastoris is very heterogeneous and contains multiple isoforms. We demonstrated that PDGF-BB was O-glycosylated during the secretion process and detected putative O-glycosylation sites using glycosylation staining and immunoblotting. By site-directed mutagenesis and high-resolution LC/MS analysis, we, for the first time, identified two threonine residues at the C-terminus as the major O-glycosylation sites on rhPDGF-BB produced in P. pastoris. Although O-glycosylation resulted in heterogeneous protein expression, the removal of glycosylation sites did not affect rhPDGF-BB mitogenic activity. In addition, the unglycosylated PDGF-BBΔGly mutant exhibited the immunogenicity comparable to that of the wild-type form. Furthermore, antiserum against PDGF-BBΔGly also recognized glycosylated PDGF-BB, indicating that protein immunogenicity was unaltered by glycosylation. These findings elucidate the effect of glycosylation on PDGF-BB structure and biological activity, and can potentially contribute to the design and production of homogeneously expressed unglycosylated or human-type glycosylated PDGF-BB in P. pastoris for pharmaceutical applications.  相似文献   

15.
Crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) are members of a major peptide family produced from the X-organ sinus gland complex in the eyestalk of crustaceans. This peptide family plays important roles in controlling several physiologic processes such as regulation of growth and reproduction. In this study the complementary DNA encoding a peptide related to the CHH/MIH/GIH family (so-called Pem-CMG) of the black tiger prawn Penaeus monodon was successfully expressed in the yeast Pichia pastoris under the control of the AOX1 promoter. The recombinant Pem-CMG was secreted into the culture medium using the -factor signal sequence; of Saccharomyces cerevisiae without the Glu-Ala-Glu-Ala spacer peptide. The amino terminus of the recombinant Pem-CMG was correctly processed as evidenced by amino-terminal peptide sequencing. The recombinant Pem-CMG was purified by reverse-phase high-performance liquid chromotography and used in a biological assay for CHH activity. The final yield of the recombinant Pem-CMG after purification was 260 µg/L of the culture medium. Both crude and purified recombinant Pem-CMG produced from P. pastoris showed the ability to elevate the glucose level in the hemolymph of eyestalk-ablated P. monodon, which demonstrates that Pem-CMG peptide functions as hyperglycemic hormone in P. monodon.  相似文献   

16.
The remarkable properties of spider dragline silk and related protein polymers will find many applications if the materials can be produced economically. We have demonstrated the production of high molecular weight spider dragline silk analog proteins encoded by synthetic genes in several microbial systems, including Escherichia coli and Pichia pastoris. In E. coli, proteins of up to 1000 amino acids in length could be produced efficiently, but the yield and homogeneity of higher molecular weight silk proteins were found to be limited by truncated synthesis, probably as a result of ribosome termination errors. No such phenomenon was observed in the yeast P. pastoris, where higher molecular weight silk proteins could be produced without heterogeneity due to truncated synthesis. Spider dragline silk analog proteins could be secreted by P. pastoris when fused to both the signal sequence and N-terminal pro-sequence of the Saccharomyces cerevisiae alpha-mating factor gene.  相似文献   

17.
Caseinomacropeptide is a polypeptide of 64 amino acid residues (106–169) derived from the C-terminal part of the mammalian milk k-casein. This macropeptide has various biological activities and is used as a functional food ingredient as well as a pharmaceutical compound. The gene encoding the human caseinomacropeptide (hCMP) was synthesized and expressed with an α-factor secretion signal in the two yeast strains, Saccharomyces cerevisiae and Pichia pastoris. The complete polypeptide of the recombinant hCMP was produced and secreted in a culture medium by both the strains, but the highest production was observed in S. cerevisiae with a galactose-inducible promoter. In a fed-batch bioreactor culture, 2.5 g/l of the recombinant hCMP was obtained from the S. cerevisiae at 97 h.  相似文献   

18.
The allelopathic effect of the cyanobacterium Tychonema bourrellyi against the cyanobacterium Microcystis aeruginosa is reported for the first time in this paper. The filtrate of T. bourrellyi CHAB663 culture showed strong inhibitory effect on M. aeruginosa NIES-843, but the inhibitory effect was weakened by shaking culture, and such results implied that the allelopathic effect was probably mediated by the volatile substances secreted by T. bourrellyi. β-Ionone was identified as a major ingredient in the volatile substances in the cultures of T. bourrellyi, and it may act as an important allelochemical responsible for this allelopathic activity. The filtrates of T. bourrellyi culture were shown to decrease the maximum electron transport rate (ETRmax) and elevate the reactive oxygen species (ROS) levels in the cells of M. aeruginosa NIES-843.  相似文献   

19.
Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals.  相似文献   

20.
Rice straw (RS) is an important raw material for the preparation of Agaricus bisporus compost in China. In this study, the characterization of composting process from RS and wheat straw (WS) was compared for mushroom production. The results showed that the temperature in RS compost increased rapidly compared with WS compost, and the carbon (C)/nitrogen (N) ratio decreased quickly. The microbial changes during the Phase I and Phase II composting process were monitored using denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) analysis. Bacteria were the dominant species during the process of composting and the bacterial community structure dramatically changed during heap composting according to the DGGE results. The bacterial community diversity of RS compost was abundant compared with WS compost at stages 4–5, but no distinct difference was observed after the controlled tunnel Phase II process. The total amount of PLFAs of RS compost, as an indicator of microbial biomass, was higher than that of WS. Clustering by DGGE and principal component analysis of the PLFA compositions revealed that there were differences in both the microbial population and community structure between RS- and WS-based composts. Our data indicated that composting of RS resulted in improved degradation and assimilation of breakdown products by A. bisporus, and suggested that the RS compost was effective for sustaining A. bisporus mushroom growth as well as conventional WS compost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号