首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed whole-genome Illumina resequencing of 198 accessions to examine the genetic diversity and facilitate the use of soybean genetic resources and identified 10 million single nucleotide polymorphisms and 2.8 million small indels. Furthermore, PacBio resequencing of 10 accessions was performed, and a total of 2,033 structure variants were identified. Genetic diversity and structure analysis congregated the 198 accessions into three subgroups (Primitive, World, and Japan) and showed the possibility of a long and relatively isolated history of cultivated soybean in Japan. Additionally, the skewed regional distribution of variants in the genome, such as higher structural variations on the R gene clusters in the Japan group, suggested the possibility of selective sweeps during domestication or breeding. A genome-wide association study identified both known and novel causal variants on the genes controlling the flowering period. Novel candidate causal variants were also found on genes related to the seed coat colour by aligning together with Illumina and PacBio reads. The genomic sequences and variants obtained in this study have immense potential to provide information for soybean breeding and genetic studies that may uncover novel alleles or genes involved in agronomically important traits.  相似文献   

2.
Ye Y  Zhong X  Zhang H 《BMC genetics》2005,6(Z1):S135
Genetic mechanisms underlying alcoholism are complex. Understanding the etiology of alcohol dependence and its comorbid conditions such as smoking is important because of the significant health concerns. In this report, we describe a method based on classification trees and deterministic forests for association studies to perform a genome-wide joint association analysis of alcoholism and smoking. This approach is used to analyze the single-nucleotide polymorphism data from the Collaborative Study on the Genetics of Alcoholism in the Genetic Analysis Workshop 14. Our analysis reaffirmed the importance of sex difference in alcoholism. Our analysis also identified genes that were reported in other studies of alcoholism and identified new genes or single-nucleotide polymorphisms that can be useful candidates for future studies.  相似文献   

3.
4.
MOTIVATION: Most of diseases are caused by a set of gene defects, which occur in a complex association. The association scheme of expressed genes can be modelled by genetic networks. Genetic networks are efficiently facilities to understand the dynamic of pathogenic processes by modelling molecular reality of cell conditions. In this sense a genetic network consists of first, a set of genes of specified cells, tissues or species and second, causal relations between these genes determining the functional condition of the biological system, i. e. under disease. A relation between two genes will exist if they both are directly or indirectly associated with disease [8]. Our goal is to characterize diseases (especially autoimmune diseases like chronic pancreatitis CP, multiple sclerosis MS, rheumatoid arthritis RA) by genetic networks generated by a computer system. We want to introduce this practice as a bioinformatic approach for finding targets.  相似文献   

5.
Family-based candidate gene and genome-wide association studies are a logical progression from linkage studies for the identification of gene and polymorphisms underlying complex traits. An efficient way to analyse phenotypic and genotypic data is to model linkage and association simultaneously. An important result from such an analysis is whether any evidence for linkage remains after fitting polymorphisms at candidate genes (residual linkage), because this may indicate locus and allelic heterogeneity in the population and will influence subsequent molecular strategies. Here we report that substantial residual linkage is to be expected, even under genetic homogeneity and when the underlying causal polymorphisms are genotyped and fitted in the model. We simulated a powerful design to detect linkage to quantitative trait loci, with 5, 10 or 20 causal SNPs spread throughout the genome. These SNPs were responsible for all genetic variation, and hence for both linkage and association. Residual linkage at the largest linkage peak from a genome-wide scan was substantial, with mean LOD scores of 0.4, 0.7, and 1.4 for the case of 5, 10 and 20 underlying causal SNPs, respectively. For less powerful designs, the proportion of the original LOD scores that remains after association will be even larger. All cases of ‘significant’ residual linkage are false positives. The reason for the apparent paradox of detecting residual linkage after fitting causal polymorphisms is that the linkage signals at the largest peaks in a genome-scan are severely inflated, even if all peaks correspond to true linkage. Our findings are general and apply to linkage mapping of any phenotype and to any pedigree structure.  相似文献   

6.
Genetic association analyses of rare variants in next-generation sequencing (NGS) studies are fundamentally challenging due to the presence of a very large number of candidate variants at extremely low minor allele frequencies. Recent developments often focus on pooling multiple variants to provide association analysis at the gene instead of the locus level. Nonetheless, pinpointing individual variants is a critical goal for genomic researches as such information can facilitate the precise delineation of molecular mechanisms and functions of genetic factors on diseases. Due to the extreme rarity of mutations and high-dimensionality, significances of causal variants cannot easily stand out from those of noncausal ones. Consequently, standard false-positive control procedures, such as the Bonferroni and false discovery rate (FDR), are often impractical to apply, as a majority of the causal variants can only be identified along with a few but unknown number of noncausal variants. To provide informative analysis of individual variants in large-scale sequencing studies, we propose the Adaptive False-Negative Control (AFNC) procedure that can include a large proportion of causal variants with high confidence by introducing a novel statistical inquiry to determine those variants that can be confidently dispatched as noncausal. The AFNC provides a general framework that can accommodate for a variety of models and significance tests. The procedure is computationally efficient and can adapt to the underlying proportion of causal variants and quality of significance rankings. Extensive simulation studies across a plethora of scenarios demonstrate that the AFNC is advantageous for identifying individual rare variants, whereas the Bonferroni and FDR are exceedingly over-conservative for rare variants association studies. In the analyses of the CoLaus dataset, AFNC has identified individual variants most responsible for gene-level significances. Moreover, single-variant results using the AFNC have been successfully applied to infer related genes with annotation information.  相似文献   

7.
Identifying rare variants that contribute to complex diseases is challenging because of the low statistical power in current tests comparing cases with controls. Here, we propose a novel and powerful rare variants association test based on the deviation of the observed mutation burden of a gene in cases from a baseline predicted by a weighted recursive truncated negative-binomial regression (RUNNER) on genomic features available from public data. Simulation studies show that RUNNER is substantially more powerful than state-of-the-art rare variant association tests and has reasonable type 1 error rates even for stratified populations or in small samples. Applied to real case-control data, RUNNER recapitulates known genes of Hirschsprung disease and Alzheimer''s disease missed by current methods and detects promising new candidate genes for both disorders. In a case-only study, RUNNER successfully detected a known causal gene of amyotrophic lateral sclerosis. The present study provides a powerful and robust method to identify susceptibility genes with rare risk variants for complex diseases.  相似文献   

8.
In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the standard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests, demonstrating its promising performance and its potential use in practice.  相似文献   

9.
Atherosclerotic cardiovascular disease (ASCVD) is one of the major leading global causes of death. Genetic and epidemiological studies strongly support the causal association between triacylglycerol-rich lipoproteins (TAGRL) and atherogenesis, even in statin-treated patients. Recent genetic evidence has clarified that variants in several key genes implicated in TAGRL metabolism are strongly linked to the increased ASCVD risk. There are several triacylglycerol-lowering agents; however, new therapeutic options are in development, among which are miRNA-based therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs (18–25 nucleotides) that negatively modulate gene expression through translational repression or degradation of target mRNAs, thereby reducing the levels of functional genes. MiRNAs play a crucial role in the development of hypertriglyceridemia as several miRNAs are dysregulated in both synthesis and clearance of TAGRL particles. MiRNA-based therapies in ASCVD have not yet been applied in human trials but are attractive. This review provides a concise overview of current interventions for hypertriglyceridemia and the development of novel miRNA and siRNA-based drugs. We summarize the miRNAs involved in the regulation of key genes in the TAGRLs synthesis pathway, which has gained attention as a novel target for therapeutic applications in CVD.  相似文献   

10.
11.
An association between high levels of serum urate and cardiovascular disease has been proposed for many decades. However, it was only recently that compelling basic science data, small clinical trials, and epidemiological studies have provided support to the idea of a true causal effect. In this review we present recently published data that study the association between hyperuricemia and selected cardiovascular diseases, with a final conclusion about the possibility of this association being causal.  相似文献   

12.
A better understanding of complex diseases and their genetics has been gained by investigating genetic disorders of lipoprotein metabolism. This has resulted in the development of ddrugs to prevent atherosclerosis, the most frequent cause of death in industrialized countries. Thus, analysis of familial hypercholesterinemia (FH), the most frequent cause of which are mutations on the LDLR gene, has contributed to the development of HMG-CoA reductase inhibitors (statins). Meanwhile, in genome-wide association studies (GWAS), variants in over 90 genes have been found to influence the concentration of plasma lipids. However, these explain only a small fraction of the genetic variance of the traits. Taking the classical polymorphism of Apo-E as an example, it is discussed that one possible reason for the ??missing heritability?? may be the selection of the SNPs on the arrays used in the GWAS. Further, this polymorphism demonstrates how interactions may mask a connection between a genotype and a disease. Genetic studies based on the principle of ??Mendelian randomization?? have established the causal role of a high Lp(a) concentration as a risk factor for coronary heart disease (CHD). For patients with end-stage renal disease, however, a polymorphism (KIV-2 CNV) is a better predictor for CHD than Lp(a) concentration.  相似文献   

13.
Ovarian cancer is a highly lethal disease. Many researchers have, therefore, attempted to identify high risk populations. In this perspective, numerous genetic association studies have been performed to discover common ovarian cancer susceptibility variants. Accordingly, there is an increasing need to synthesize the evidence in order to identify true associations. A comprehensive and systematic assessment of all available data on genetic susceptibility to sporadic ovarian cancer was carried out. The evidence of statistically significant findings was evaluated based on the number of positive replications, the ratio of positive and negative studies, and the false-positive report probability (FPRP). The authors reviewed three genome-wide association studies (GWAS) and 147 candidate gene studies, published from 1990 to October 2010, including around 1100 genetic variants in more than 200 candidate genes and 20 intergenic regions. Genetic variants with the strongest evidence for an association with ovarian cancer include the rs2854344 in the RB1 gene and SNPs on chromosomes 9p22.2, 8q24, 2q31, and 19p13. Promising genetic pathways for ovarian cancer include the cell cycle, DNA repair, sex steroid hormone and oncogenic pathway. Concluding, this review shows that many genetic association studies have been performed, but only a few genetic variants show strong evidence for an association with ovarian cancer. More research is needed to elucidate causal genetic variants, taking into consideration gene-gene and gene-environment interactions, combined effects of common and rare variants, and differences between histological subtypes of this cancer.  相似文献   

14.
Cigarette smoking is a common addiction that increases the risk for many diseases, including lung cancer and chronic obstructive pulmonary disease. Genome-wide association studies (GWAS) have successfully identified and validated several susceptibility loci for nicotine consumption and dependence. However, the trait variance explained by these genes is only a small fraction of the estimated genetic risk. Pathway analysis complements single marker methods by including biological knowledge into the evaluation of GWAS, under the assumption that causal variants lie in functionally related genes, enabling the evaluation of a broad range of signals. Our approach to the identification of pathways enriched for multiple genes associated with smoking quantity includes the analysis of two studies and the replication of common findings in a third dataset. This study identified pathways for the cholinergic receptors, which included SNPs known to be genome-wide significant; as well as novel pathways, such as genes involved in the sensory perception of smell, that do not contain any single SNP that achieves that stringent threshold.  相似文献   

15.
Gene-based association tests aggregate genotypes across multiple variants for each gene, providing an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early gene-based test applications often focused on rare coding variants; a more recent wave of gene-based methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are expected to be particularly valuable for gene-based analysis, since most GWAS associations to date are non-coding. However, identifying causal genes from regulatory associations remains challenging and contentious. Here, we present a statistical framework and computational tool to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis, applied with comprehensive coding and tissue-specific regulatory annotations. We compare power and accuracy identifying causal genes across single-annotation, omnibus, and annotation-agnostic gene-based tests in simulation studies and an analysis of 128 traits from the UK Biobank, and find that incorporating heterogeneous annotations in gene-based association analysis increases power and performance identifying causal genes.  相似文献   

16.
Sequencing studies have been discovering a numerous number of rare variants, allowing the identification of the effects of rare variants on disease susceptibility. As a method to increase the statistical power of studies on rare variants, several groupwise association tests that group rare variants in genes and detect associations between genes and diseases have been proposed. One major challenge in these methods is to determine which variants are causal in a group, and to overcome this challenge, previous methods used prior information that specifies how likely each variant is causal. Another source of information that can be used to determine causal variants is the observed data because case individuals are likely to have more causal variants than control individuals. In this article, we introduce a likelihood ratio test (LRT) that uses both data and prior information to infer which variants are causal and uses this finding to determine whether a group of variants is involved in a disease. We demonstrate through simulations that LRT achieves higher power than previous methods. We also evaluate our method on mutation screening data of the susceptibility gene for ataxia telangiectasia, and show that LRT can detect an association in real data. To increase the computational speed of our method, we show how we can decompose the computation of LRT, and propose an efficient permutation test. With this optimization, we can efficiently compute an LRT statistic and its significance at a genome-wide level. The software for our method is publicly available at http://genetics.cs.ucla.edu/rarevariants .  相似文献   

17.
Multilocus analysis of single-nucleotide-polymorphism (SNP) haplotypes may provide evidence of association with disease, even when the individual loci themselves do not. Haplotype-based methods are expected to outperform single-SNP analyses because (i) common genetic variation can be structured into haplotypes within blocks of strong linkage disequilibrium and (ii) the functional properties of a protein are determined by the linear sequence of amino acids corresponding to DNA variation on a haplotype. Here, I propose a flexible Bayesian framework for modeling haplotype association with disease in population-based studies of candidate genes or small candidate regions. I employ a Bayesian partition model to describe the correlation between marker-SNP haplotypes and causal variants at the underlying functional polymorphism(s). Under this model, haplotypes are clustered according to their similarity, in terms of marker-SNP allele matches, which is used as a proxy for recent shared ancestry. Haplotypes within a cluster are then assigned the same probability of carrying a causal variant at the functional polymorphism(s). In this way, I can account for the dominance effect of causal variants, here corresponding to any deviation from a multiplicative contribution to disease risk. The results of a detailed simulation study demonstrate that there is minimal cost associated with modeling these dominance effects, with substantial gains in power over haplotype-based methods that do not incorporate clustering and that assume a multiplicative model of disease risks.  相似文献   

18.
An integrated haplotype map of the human major histocompatibility complex   总被引:26,自引:0,他引:26  
Numerous studies have clearly indicated a role for the major histocompatibility complex (MHC) in susceptibility to autoimmune diseases. Such studies have focused on the genetic variation of a small number of classical human-leukocyte-antigen (HLA) genes in the region. Although these genes represent good candidates, given their immunological roles, linkage disequilibrium (LD) surrounding these genes has made it difficult to rule out neighboring genes, many with immune function, as influencing disease susceptibility. It is likely that a comprehensive analysis of the patterns of LD and variation, by using a high-density map of single-nucleotide polymorphisms (SNPs), would enable a greater understanding of the nature of the observed associations, as well as lead to the identification of causal variation. We present herein an initial analysis of this region, using 201 SNPs, nine classical HLA loci, two TAP genes, and 18 microsatellites. This analysis suggests that LD and variation in the MHC, aside from the classical HLA loci, are essentially no different from those in the rest of the genome. Furthermore, these data show that multi-SNP haplotypes will likely be a valuable means for refining association signals in this region.  相似文献   

19.
With the recent development of whole‐exome sequencing enrichment designs for the dog, a novel tool for disease‐association studies became available. The aim of disease‐association studies is to identify one or a very limited number of putative causal variants or genes from the large pool of genetic variation. To maximize the efficiency of these studies and to provide some directions of what to expect, we evaluated the effect on variant reduction for various combinations of cases and controls for both dominant and recessive types of inheritance assuming variable degrees of penetrance and detectance. In this study, variant data of 14 dogs (13 Labrador Retrievers and one Dogue de Bordeaux), obtained by whole‐exome sequencing, were analyzed. In the filtering process, we found that unrelated dogs from the same breed share up to 70% of their variants, which is likely a consequence of the breeding history of the dog. For the designs tested with unrelated dogs, combining two cases and two controls gave the best result. These results were improved further by adding closely related dogs. Reduced penetrance and/or detectance has a drastic effect on the efficiency and is likely to have a profound effect on the sample size needed to elucidate the causal variant. Overall, we demonstrated that sequencing a small number of dogs results in a marked reduction of variants that are likely sufficient to pinpoint causal variants or genes.  相似文献   

20.
Atherosclerosis is a complex disease involving genetic and environmental risk factors, acting on their own or in synergy. Within the general population, polymorphisms within genes in lipid metabolism, inflammation, and thrombogenesis are probably responsible for the wide range of susceptibility to myocardial infarction, a fatal consequence of atherosclerosis. Genetic linkage studies have been carried out in both humans and mouse models to identify these polymorphisms. Approximately 40 quantitative trait loci for atherosclerotic disease have been found in humans, and approximately 30 in mice. Recently, genome-wide association studies have been used to identify atherosclerosis-susceptibility polymorphisms. Although discovering new atherosclerosis genes through these approaches remains challenging, the pace at which these polymorphisms are being found is accelerating due to rapidly improving bioinformatics resources and biotechnologies. The outcome of these efforts will not only unveil the molecular basis of atherosclerosis but also facilitate the discovery of drug targets and individualized medication against the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号