首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP.  相似文献   

2.
A benzothiophene desulfurizing bacterium was isolated and identified as Rhodococcus sp. strain T09. Growth assays revealed that this strain assimilated, as the sole sulfur source, various organosulfur compounds that cannot be assimilated by the well-studied dibenzothiophene-desulfurizing Rhodococcus sp. IGTS8. The cellular growth rate of strain T09 for the alkylated benzothiophenes depended on the alkylated position and the length of the alkyl moiety.  相似文献   

3.
4.
An NAD-dependent secondary alcohol dehydrogenase (ADH) produced by Rhodococcus sp. GK1 was purified about fivefold with a yield of 82% by hydrophobic interaction chromatography. This enzyme reduced monoketones, diketones and α-dicarbonyl compounds ; it oxidized secondary alcohols but not primary alcohols. Optimum pH was 7·0 or 8·5 for reduction or oxidation of substrates, respectively, and optimal temperature for activity was 55 °C. The apparent molecular mass of ADH was about 60 kDa by gel filtration chromatography.  相似文献   

5.
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences.  相似文献   

6.
Rhodococcus rhodochrous IGTS8 was previously isolated because of its ability to use coal as its sole source of sulfur for growth. Subsequent growth studies have revealed that IGTS8 is capable of using a variety of organosulfur compounds as sources of sulfur but not carbon. In this article, the ability of IGTS8 to selectively remove organic sulfur from water-soluble coal-derived material is investigated. The microbial removal of organic sulfur from coal requires microorganisms capable of cleaving carbon-sulfur bonds and the accessibility of these bonds to microorganisms. The use of water-soluble coal-derived material effectively overcomes the problem of accessibility and allows the ability of microorganisms to cleave carbon-sulfur bonds present in coal-derived material to be assessed directly. Three coals, two coal solubilization procedures, and two methods of biodesulfurization were examined. The results of these experiments reveal that the microbial removal of significant amounts of organic sulfur from water-soluble coal-derived material with treatment times as brief as 24 h is possible. Moreover, the carbon content and calorific value of biotreated products are largely unaffected. Biotreatment does result, however, in an increased hydrogen and nitrogen content and a decreased oxygen content of the coal-derived material. The aqueous supernatant obtained from biodesulfurization experiments does not contain sulfate, sulfite, or other forms of soluble sulfur at increased concentrations in comparison with control samples. Sulfur removed from water-soluble coal-derived material appears to be incorporated into biomass. (c) 1992 John Wiley & Sons, Inc.  相似文献   

7.
Dibenzothiophene (DBT), and in particular substituted DBTs, are resistant to hydrodesulfurization (HDS) and can persist in fuels even after aggressive HDS treatment. Treatment by Rhodococcus sp. strain ECRD-1 of a middle distillate oil whose sulfur content was virtually all substituted DBTs produced extensive desulfurization and a sulfur level of 56 ppm.  相似文献   

8.
The dibenzothiophene (DBT) desulfurizing operon, dsz, was introduced into various benzothiophene (BT)-desulfurizing bacteria using a Rhodococcus-E. coli shuttle vector. Of the tested recombinant bacteria, only those from Rhodococcus sp. strain T09 grew with both DBT and BT as the sole sulfur source. These recombinant cells desulfurized not only alkylated BTs, but also various alkylated DBTs, producing alkylated hydroxybiphenyls as the desulfurized products. Recombinant strain T09 also desulfurized alkylated DBT in an oil-water, two-phase resting-cell reaction. The dsz operon had the same desulfurizing activity when inserted into the vector in either orientation, indicating that the promoter region of the operon was functional in strain T09.  相似文献   

9.
Desulfurization of a model fuel system consisting of hexadecane and dibenzothiophene (DBT) by Rhodococcus rhodochrous IGTS8 was demonstrated in a 2-L continuous stirred tank reactor (CSTR). The reactor was operated in a semicontinuous and continuous mode with and without recycling of the model fuel. A constant volumetric desulfurization activity A(t), (in mg HBP L(-1) h(-1)) was maintained in the reactor with a feeding strategy of fresh cell suspension based on a first-order decay of the biocatalyst. Maximum desulfurization rates, as measured by specific desulfurization activity, of 1.9 mg HBP/g DCW h were attained. Rates of biocatalyst decay were on the order of 0.072 h(-1). Theoretical predictions of a respiratory quotient (RQ) associated with this biotransformation reaction agree well with experimental data from off-gas analysis. In addition, the ratio of the specific desulfurization activity a(t), (in mg HBP/g DCW h) of recycled and fresh biocatalyst was determined and evaluated.  相似文献   

10.
Two Rhodococcus erythropolis isolates, named A66 and A69, together with the well-characterized R. erythropolis strain IGTS8 were compared biochemically and genetically. Both isolates, like strain IGTS8, desulfurized DBT to 2-hydroxybiphenyl (2-HBP), following the 4S pathway of desulfurization. Strain IGTS8 showed the highest (81.5%) desulfurization activity in a medium containing DBT at 30 °C. Strain A66 showed approximately the same desulfurization activity either when incubated at 30 °C or at 37 °C, while strain A69 showed an increase of desulfurization efficiency (up to 79%) when incubated at 37 °C. Strains A66 and A69 were also able to grow using various organosulfur or organonitrogen-compounds as the sole sulfur or nitrogen sources. The biological responses of A66, A69 and IGTS8 strains to a series of mutagens and environmental agents were evaluated, trying to mimic actual circumstances involved in exposure/handling of microorganisms during petroleum biorefining. The results showed that strains A69 and IGTS8 were much more resistant to UVC treatment than A66. The three desulfurization genes (dszA, dszB and dszC) present in strains A66 and A69 were partially characterized. They seem to be located on a plasmid, not only in the strain IGTS8, but also in A66 and A69. PCR amplification was observed using specific primers for dsz genes in all the strains tested; however, no amplification product was observed using primers for carbazole (car) or quinoline (qor) metabolisms. All this information contributes to broaden our knowledge concerning both the desulfurization of DBT and the degradation of organonitrogen compounds within the R. erythropolis species.  相似文献   

11.
Dibenzothiophene (DBT) degradation activity of recombinant Rhodococcus sp. T09/pRKPP was increased by about 3.5-fold by introduction of the NAD(P)H/FMN oxidoreductase gene (dszD), while DBT desulfurization activity remained the same with production of dibenzo[1,2]oxathiin-6-oxide, which was caused by insufficient activity of the last desulfurization step involving a desulfinase. Introduction of an additional dsz operon resulted in a 3.3-fold increase DBT desulfurization activity (31 mol g dry cell–1 h–1) compared with that of T09/pRKPP (9.5 mol g dry cell–1 h–1). Furthermore, optimization of DBT at 25 mg l–1 and glucose at 10 g l–1, increased the total DBT desulfurization activity 2- to 3-fold due to increases in the DBT desulfurizing specific activity and the final cell concentration.  相似文献   

12.
13.
Rhodococcus sp. strain Mel was isolated from soil by enrichment and grew in minimal medium with melamine as the sole N source with a doubling time of 3.5 h. Stoichiometry studies showed that all six nitrogen atoms of melamine were assimilated. The genome was sequenced by Roche 454 pyrosequencing to 13× coverage, and a 22.3-kb DNA region was found to contain a homolog to the melamine deaminase gene trzA. Mutagenesis studies showed that the cyanuric acid hydrolase and biuret hydrolase genes were clustered together on a different 17.9-kb contig. Curing and gene transfer studies indicated that 4 of 6 genes required for the complete degradation of melamine were located on an ~265-kb self-transmissible linear plasmid (pMel2), but this plasmid was not required for ammeline deamination. The Rhodococcus sp. strain Mel melamine metabolic pathway genes were located in at least three noncontiguous regions of the genome, and the plasmid-borne genes encoding enzymes for melamine metabolism were likely recently acquired.  相似文献   

14.
A gene encoding a eugenol oxidase was identified in the genome from Rhodococcus sp. strain RHA1. The bacterial FAD-containing oxidase shares 45% amino acid sequence identity with vanillyl alcohol oxidase from the fungus Penicillium simplicissimum. Eugenol oxidase could be expressed at high levels in Escherichia coli, which allowed purification of 160 mg of eugenol oxidase from 1 L of culture. Gel permeation experiments and macromolecular MS revealed that the enzyme forms homodimers. Eugenol oxidase is partly expressed in the apo form, but can be fully flavinylated by the addition of FAD. Cofactor incorporation involves the formation of a covalent protein-FAD linkage, which is formed autocatalytically. Modeling using the vanillyl alcohol oxidase structure indicates that the FAD cofactor is tethered to His390 in eugenol oxidase. The model also provides a structural explanation for the observation that eugenol oxidase is dimeric whereas vanillyl alcohol oxidase is octameric. The bacterial oxidase efficiently oxidizes eugenol into coniferyl alcohol (KM=1.0 microM, kcat=3.1 s-1). Vanillyl alcohol and 5-indanol are also readily accepted as substrates, whereas other phenolic compounds (vanillylamine, 4-ethylguaiacol) are converted with relatively poor catalytic efficiencies. The catalytic efficiencies with the identified substrates are strikingly different when compared with vanillyl alcohol oxidase. The ability to efficiently convert eugenol may facilitate biotechnological valorization of this natural aromatic compound.  相似文献   

15.
The genes involved in isoprene (2-methyl-1,3-butadiene) utilization in Rhodococcus sp. strain AD45 were cloned and characterized. Sequence analysis of an 8.5-kb DNA fragment showed the presence of 10 genes of which 2 encoded enzymes which were previously found to be involved in isoprene degradation: a glutathione S-transferase with activity towards 1,2-epoxy-2-methyl-3-butene (isoI) and a 1-hydroxy-2-glutathionyl-2-methyl-3-butene dehydrogenase (isoH). Furthermore, a gene encoding a second glutathione S-transferase was identified (isoJ). The isoJ gene was overexpressed in Escherichia coli and was found to have activity with 1-chloro-2,4-dinitrobenzene and 3,4-dichloro-1-nitrobenzene but not with 1, 2-epoxy-2-methyl-3-butene. Downstream of isoJ, six genes (isoABCDEF) were found; these genes encoded a putative alkene monooxygenase that showed high similarity to components of the alkene monooxygenase from Xanthobacter sp. strain Py2 and other multicomponent monooxygenases. The deduced amino acid sequence encoded by an additional gene (isoG) showed significant similarity with that of alpha-methylacyl-coenzyme A racemase. The results are in agreement with a catabolic route for isoprene involving epoxidation by a monooxygenase, conjugation to glutathione, and oxidation of the hydroxyl group to a carboxylate. Metabolism may proceed by fatty acid oxidation after removal of glutathione by a still-unknown mechanism.  相似文献   

16.
The dsz desulfurization gene cluster from Rhodococcus erythropolis strain KA2-5-1 was transferred into R. erythropolis strain MC1109, unable to desulfurize light gas oil (LGO), using a transposon-transposase complex. As a result, two recombinant strains, named MC0203 and MC0122, were isolated. Resting cells of strain MC0203 decreased the sulfur concentration of LGO from 120 mg l–1 to 70 mg l–1 in 2 h. The LGO-desulfurization activity of strain MC0203 was about twice that of strain MC0122 and KA2-5-1. The 10-methyl fatty acids of strain MC0203 were about 28%–41% that of strain MC1109. It is likely that strain MC0203 had a mutation involving alkylenation or methylation of 9-unsaturated fatty acids caused by the transposon inserted in the chromosome, which increased the fluidity of cell membranes and enhanced the desulfurization activity.  相似文献   

17.
A dibenzothiophene (DBT)-degrading bacterial strain able to utilize carbazole as the only source of nitrogen was identified as Gordonia sp. F.5.25.8 due to its 16S rRNA gene sequence and phenotypic characteristics. Gas chromatography (GC) and GC–mass spectroscopy analyses showed that strain F.5.25.8 transformed DBT into 2-hydroxybiphenyl (2-HBP). This strain was also able to grow using various organic sulfur or nitrogen compounds as the sole sulfur or nitrogen sources. Resting-cell studies indicated that desulfurization occurs either in cell-associated or in cell-free extracts of F.5.25.8. The biological responses of F.5.25.8 to a series of mutagens and environmental agents were also characterized. The results revealed that this strain is highly tolerant to DNA damage and also refractory to induced mutagenesis. Strain F.5.25.8 was also characterized genetically. Results showed that genes involved in desulfurization (dsz) are located in the chromosome, and PCR amplification was observed with primers dszA and dszB designed based on Rhodococcus genes. However, no amplification product was observed with the primer based on dszC.  相似文献   

18.
The biochemical characterization of the muconate and the chloromuconate cycloisomerases of the chlorophenol-utilizing Rhodococcus erythropolis strain 1CP previously indicated that efficient chloromuconate conversion among the gram-positive bacteria might have evolved independently of that among gram-negative bacteria. Based on sequences of the N terminus and of tryptic peptides of the muconate cycloisomerase, a fragment of the corresponding gene has now been amplified and used as a probe for the cloning of catechol catabolic genes from R. erythropolis. The clone thus obtained expressed catechol 1,2-dioxygenase, muconate cycloisomerase, and muconolactone isomerase activities. Sequencing of the insert on the recombinant plasmid pRER1 revealed that the genes are transcribed in the order catA catB catC. Open reading frames downstream of catC may have a function in carbohydrate metabolism. The predicted protein sequence of the catechol 1,2-dioxygenase was identical to the one from Arthrobacter sp. strain mA3 in 59% of the positions. The chlorocatechol 1,2-dioxygenases and the chloromuconate cycloisomerases of gram-negative bacteria appear to be more closely related to the catechol 1,2-dioxygenases and muconate cycloisomerases of the gram-positive strains than to the corresponding enzymes of gram-negative bacteria.  相似文献   

19.
20.
D Labb  J Garnon    P C Lau 《Journal of bacteriology》1997,179(8):2772-2776
We report the cloning, sequence, and expression of the bpdS and bpdT genes from Rhodococcus sp. strain M5, which are believed to encode the first two-component signal transduction system in the genus Rhodococcus, which potentially regulates biphenyl/polychlorobiphenyl metabolism in M5. BpdT has a typical responses regulator sequence (209 amino acids; 23 kDa), whereas BpdS, the predicted histidine kinase component, is an unusually large transmembrane protein (1,576 amino acids; 170 kDa) that contains ATP-binding and leucine-rich repeat motifs and some conserved residues of protein kinases. Expression of bpdST, like that of the bpdC1C2BADE degradative operon, is inducible by biphenyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号