首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radial spoke is a stable structural complex in the 9 + 2 axoneme for the control of flagellar motility. However, the spokes in Chlamydomonas mutant pf24 are heterogeneous and unstable, whereas several spoke proteins are reduced differentially. To elucidate the defective mechanism, we clone RSP16, a prominent spoke protein diminished in pf24 axonemes. Unexpectedly, RSP16 is a novel HSP40 member of the DnaJ superfamily that assists chaperones in various protein-folding-related processes. Importantly, RSP16 is uniquely excluded from the 12S spoke precursor complex that is packaged in the cell body and transported toward the flagellar tip to be converted into mature 20S axonemal spokes. Rather, RSP16, transported separately, joins the precursor complex in flagella. Furthermore, RSP16 molecules in vitro and in flagella form homodimers, a characteristic required for the cochaperone activity of HSP40. We postulate that the spoke HSP40 operates as a cochaperone to assist chaperone machinery at the flagellar tip to actively convert the smaller spoke precursor and itself into the mature stable complex; failure of the interaction between the spoke HSP40 and its target polypeptide results in heterogeneous unstable radial spokes in pf24.  相似文献   

2.
Radial spokes are critical multisubunit structures required for normal ciliary and eukaryotic flagellar motility. Experimental evidence indicates the radial spokes are mechanochemical transducers that transmit signals from the central pair apparatus to the outer doublet microtubules for local control of dynein activity. Recently, progress has been made in identifying individual components of the radial spoke, yet little is known about how the radial spoke is assembled or how it performs in signal transduction. Here we focus on radial spoke protein 3 (RSP3), a highly conserved AKAP located at the base of the radial spoke stalk and required for radial spoke assembly on the doublet microtubules. Biochemical approaches were taken to further explore the functional role of RSP3 within the radial spoke structure and for control of motility. Chemical crosslinking, native gel electrophoresis, and epitope-tagged RSP3 proteins established that RSP3 forms a dimer. Analysis of truncated RSP3 proteins indicates the dimerization domain coincides with the previously characterized axoneme binding domain in the N-terminus. We propose a model in which each radial spoke structure is built on an RSP3 dimer, and indicating that each radial spoke can potentially localize multiple PKAs or AKAP-binding proteins in position to control dynein activity and flagellar motility.  相似文献   

3.
4.
Genetic and morphological studies have revealed that the radial spokes regulate ciliary and flagellar bending. Functional and biochemical analysis and the discovery of calmodulin in the radial spokes suggest that the regulatory mechanism involves control of axonemal protein phosphorylation and calcium binding to spoke proteins. To identify potential regulatory proteins in the radial spoke, in-gel kinase assays were performed on isolated axonemes and radial spoke fractions. The results indicated that radial spoke protein 2 (RSP2) can bind ATP and transfer phosphate in vitro. RSP2 was cloned and mapped to the PF24 locus, a gene required for motility. Sequencing revealed that pf24 contains a point mutation converting the first ATG to ATA, resulting in only trace amounts of RSP2 and confirming the RSP2 mapping. Surprisingly, the sequence does not include signature domains for conventional kinases, indicating that RSP2 may not perform as a protein kinase in vivo. However, the predicted RSP2 protein sequence contains Ca2+-dependent calmodulin binding motifs and a GAF domain, a domain found in diverse signaling proteins for binding small ligands including cyclic nucleotides. As predicted from the sequence, recombinant RSP2 binds calmodulin in a calcium-dependent manner. We postulate that RSP2 is a regulatory subunit of the radial spoke involved in localization of calmodulin for control of motility.  相似文献   

5.
Previous physiological and pharmacological experiments have demonstrated that the Chlamydomonas flagellar axoneme contains a cAMP-dependent protein kinase (PKA) that regulates axonemal motility and dynein activity. However, the mechanism for anchoring PKA in the axoneme is unknown. Here we test the hypothesis that the axoneme contains an A-kinase anchoring protein (AKAP). By performing RII blot overlays on motility mutants defective for specific axonemal structures, two axonemal AKAPs have been identified: a 240-kD AKAP associated with the central pair apparatus, and a 97-kD AKAP located in the radial spoke stalk. Based on a detailed analysis, we have shown that AKAP97 is radial spoke protein 3 (RSP3). By expressing truncated forms of RSP3, we have localized the RII-binding domain to a region between amino acids 144-180. Amino acids 161-180 are homologous with the RII-binding domains of other AKAPs and are predicted to form an amphipathic helix. Amino acid substitution of the central residues of this region (L to P or VL to AA) results in the complete loss of RII binding. RSP3 is located near the inner arm dyneins, where an anchored PKA would be in direct position to modify dynein activity and regulate flagellar motility.  相似文献   

6.
Radial spokes of the eukaryotic flagellum extend from the A tubule of each outer doublet microtubule toward the central pair microtubules. In the paralyzed flagella mutant of Chlamydomonas pf14, a mutation in the gene for one of 17 polypeptides that comprise the radial spokes results in flagella that lack all 17 spoke components. The defective gene product, radial spoke protein 3 (RSP3), is, therefore, pivotal to the assembly of the entire spoke and may attach the spoke to the axoneme. We have synthesized RSP3 in vitro and assayed its binding to axonemes from pf14 cells to determine if RSP3 can attach to spokeless axonemes. In vitro, RSP3 binds to pf14 axonemes, but not to wild-type axonemes or microtubules polymerized from purified chick brain tubulin. The sole axoneme binding domain of RSP3 is located within amino acids 1-85 of the 516 amino acid protein; deletion of these amino acids abolishes binding by RSP3. Fusion of amino acids 1-85 or 42-85 to an unrelated protein confers complete or partial binding activity, respectively, to the fusion protein. Transformation of pf14 cells with mutagenized RSP3 genes indicates that amino acids 18-87 of RSP3 are important to its function, but that the carboxy-terminal 140 amino acids can be deleted with little effect on radial spoke assembly or flagellar motility.  相似文献   

7.
In the 9 + 2 axoneme, radial spokes are structural components attached to the A-tubules of the nine outer doublet microtubules. They protrude toward the central pair microtubule complex with which they have transient but regular interactions for the normal flagellar motility to occur. Flagella of Chlamydomonas mutants deficient in entire radial spokes or spoke heads are paralyzed. In this study the importance of two radial spoke proteins in the flagellar movement is exemplified by the potent inhibitory action of two monoclonal antibodies on the axonemal motility of demembranated-reactivated Chlamydomonas models. We show that one of these proteins is localized on the stalk of the radial spokes, whereas the other is a component of the head of the same structure and most likely correspond to radial spoke protein 2 and 1, respectively. Fine motility analysis by videomicrography further indicates that these two anti-radial spoke protein antibodies at low concentration affect motility of demembranated-reactivated Chlamydomonas by changing the flagellar waveform without modifying axonemal beat frequency. They also modify wave amplitude differently during motility inhibition. This brings more direct evidence for the involvement of both radial spoke stalk and head in the fine tuning of the waveform during flagellar motility.  相似文献   

8.
Axonemes are highly organized microtubule-based structures conserved in many eukaryotes. In an attempt to study axonemes by a proteomics approach, we selectively cloned cDNAs of axonemal proteins by immunoscreening the testis cDNA library from the ascidian Ciona intestinalis by using an antiserum against whole axonemes. We report here a 37-kDa protein of which cDNA occurred most frequently among total positive clones. This protein, named LRR37, belongs to the class of SDS22+ leucine-rich repeat (LRR) family. LRR37 is different from the LRR outer arm dynein light chain reported in Chlamydomonas and sea urchin flagella, and thus represents a novel axonemal LRR protein. Immunoelectron microscopy by using a polyclonal antibody against LRR37 showed that it is localized on the tip of the radial spoke, most likely on the spoke head. The LRR37 protein in fact seems to form a complex together with radial spoke protein 3 in a KI extract of the axonemes. These results suggest that LRR37 is a component of the radial spoke head and is involved in the interaction with other radial spoke components or proteins in the central pair projection.  相似文献   

9.
Calmodulin (CaM) is an axonemal component. To examine the pathway of Ca(2+)/CaM signaling in cilia, using Ca(2+)/CaM-affinity column, we identified seven Ca(2+)/CaM-associated proteins from a crude dynein fraction and isolated 62 kDa (p62) and 66 kDa (p66) Ca(2+)/CaM-associated proteins in Tetrahymena cilia. The amino acid sequences deduced from the p62 and p66 cDNA sequences suggested that these proteins were similar to Chlamydomonas radial spoke proteins 4 and 6 (RSP4 and RSP6), components of the radial spoke head, and sea urchin sperm p63, which is a homologue of RSP4/6, and isolated as a key component that affect flagellar bending patterns. Although p62 and p66 do not have a conventional CaM-binding site, those have consecutive sequences which showed high normalized scores (>or= 5) from a CaM target database. These consecutive sequences were also found in RSP4, RSP6, and p63. These radial spoke heads proteins have a high similarity region composed of 15 amino acids between the five proteins. Immunoelectron microscopy using anti-CaM antibody showed that CaM was localized along the outer edge of the curved central pair microtubules in axoneme. Therefore, it is possible that the interaction between Ca(2+)/CaM and radial spoke head control axonemal curvature in the ciliary and flagellar waveform.  相似文献   

10.
Radial spokes are a conserved axonemal structural complex postulated to regulate the motility of 9 + 2 cilia and flagella via a network of phosphoenzymes and regulatory proteins. Consistently, a Chlamydomonas radial spoke protein, RSP3, has been identified by RII overlays as an A-kinase anchoring protein (AKAP) that localizes the cAMP-dependent protein kinase (PKA) holoenzyme by binding to the RIIa domain of PKA RII subunit. However, the highly conserved docking domain of PKA is also found in the N termini of several AKAP-binding proteins unrelated to PKA as well as a 24-kDa novel spoke protein, RSP11. Here, we report that RSP11 binds to RSP3 directly in vitro and colocalizes with RSP3 toward the spoke base near outer doublets and dynein motors in axonemes. Importantly, RSP11 mutant pf25 displays a spectrum of motility, from paralysis with flaccid or twitching flagella as other spoke mutants to wildtype-like swimming. The wide range of motility changes reversibly depending on the condition of liquid media without replacing defective proteins. We postulate that radial spokes use the RIIa/AKAP module to regulate ciliary and flagellar beating; absence of the spoke RIIa protein exposes a medium-sensitive regulatory mechanism that is not obvious in wild-type Chlamydomonas.  相似文献   

11.
Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility.  相似文献   

12.
A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH–RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.  相似文献   

13.
We describe the phylogenetic analysis and expression pattern of the Xenopus radial spoke protein 3 (RSP3) gene during early development. The Xenopus RSP3 protein presents characteristic features of the RSP3 family. It contains a radial spoke domain, which is 75 and 72 % identical to the corresponding region of human and Chlamydomonas RSP3 proteins, respectively. Examination of the phylogenetic relationship between the Xenopus RSP3 protein and its known homologues from different deuterostomes indicates that the RSP3 proteins are highly conserved among deuterostomes. Whole-mount in situ hybridization analyses show that Xenopus RSP3 is a maternal mRNA enriched in the animal hemisphere during cleavage stages. The expression is detected in the dorsal region of the embryo during gastrulation, then in the presumptive neuroectoderm at the end of gastrulation. During neurulation and at the subsequent stages, the expression of RSP3 mRNA is detected in the entire multiciliated cells of epidermis. At tail-bud stages, it is progressively expressed in the otic vesicles and sequentially expressed in the nephrostomes. Expression could be also detected in the floor plate of the neural tube. This expression pattern persists until at least late tail-bud stages.  相似文献   

14.
Following their generation in the germinal zones, young neurons of the neocortex, hippocampus and cerebellum undergo long-distance migration to reach their final destinations. This locomotive activity depends on active deployment of cytoskeletal elements including the microtubule apparatus. In this study, we report the identification and expression of radial spoke protein 3 (RSP3), a member of a protein cluster responsible for anchoring and modifying dynein motor activity known to be crucial to microtubule sliding. The mouse RSP3 gene consists of eight exons and seven introns and spans over 230 kb. The genomic organisations of the human and rat RSP3 genes are similar although they span approximately 23 and 53 kb, respectively. This is in contrast to the Chlamydomonas RSP3 gene, where RSP3 was first isolated, which consists of four exons and three introns and spans approximately 2.7 kb. Despite these differences, the nucleotide and amino acid sequences upstream of, and throughout the RPII-binding domain of RSP3 are highly conserved between all the above-mentioned species. Mouse RSP3 mRNA was restricted to the developing neocortex, hippocampus and cerebellum during the stages when these structures are known to contain large numbers of migratory neurons. Gene expression studies suggest that RSP3 function is consistent with a locomotory role for this protein in migrating young neurons. In addition, expression of RSP3 mRNA in adult neurons point to additional, though still unknown functions. Our data provides the first evidence for the expression of radial spoke proteins in higher eukaryotes, and provides a biological framework for how these proteins may participate in microtubule sliding and neuronal migration in the embryonic brain.  相似文献   

15.
Monoclonal antibodies raised against axonemal proteins of sea urchin spermatozoa have been used to study regulatory mechanisms involved in flagellar motility. Here, we report that one of these antibodies, monoclonal antibody D-316, has an unusual perturbating effect on the motility of sea urchin sperm models; it does not affect the beat frequency, the amplitude of beating or the percentage of motile sperm models, but instead promotes a marked transformation of the flagellar beating pattern which changes from a two-dimensional to a three-dimensional type of movement. On immunoblots of axonemal proteins separated by SDS-PAGE, D-316 recognized a single polypeptide of 90 kDa. This protein was purified following its extraction by exposure of axonemes to a brief heat treatment at 40°C. The protein copurified and coimmunoprecipitated with proteins of 43 and 34 kDa, suggesting that it exists as a complex in its native form. Using D-316 as a probe, a full-length cDNA clone encoding the 90-kDa protein was obtained from a sea urchin cDNA library. The sequence predicts a highly acidic (pI = 4.0) protein of 552 amino acids with a mass of 62,720 Da (p63). Comparison with protein sequences in databases indicated that the protein is related to radial spoke proteins 4 and 6 (RSP4 and RSP6) of Chlamydomonas reinhardtii, which share 37% and 25% similarity, respectively, with p63. However, the sea urchin protein possesses structural features distinct from RSP4 and RSP6, such as the presence of three major acidic stretches which contains 25, 17, and 12 aspartate and glutamate residues of 34-, 22-, and 14-amino acid long stretches, respectively, that are predicted to form α-helical coiled-coil secondary structures. These results suggest a major role for p63 in the maintenance of a planar form of sperm flagellar beating and provide new tools to study the function of radial spoke heads in more evolved species.  相似文献   

16.
Genetic and in vitro analyses have revealed that radial spokes play a crucial role in regulation of ciliary and flagellar motility, including control of waveform. However, the mechanisms of regulation are not understood. Here, we developed a novel procedure to isolate intact radial spokes as a step toward understanding the mechanism by which these complexes regulate dynein activity. The isolated radial spokes sediment as 20S complexes that are the size and shape of radial spokes. Extracted radial spokes rescue radial spoke structure when reconstituted with isolated axonemes derived from the radial spoke mutant pf14. Isolated radial spokes are composed of the 17 previously defined spoke proteins as well as at least five additional proteins including calmodulin and the ubiquitous dynein light chain LC8. Analyses of flagellar mutants and chemical cross-linking studies demonstrated calmodulin and LC8 form a complex located in the radial spoke stalk. We postulate that calmodulin, located in the radial spoke stalk, plays a role in calcium control of flagellar bending.  相似文献   

17.
Radial spoke protein 3 (RSP3) was first identified in Chlamydomonas as a component of the radial spoke. The mammalian homologue of the Chlamydomonas RSP3 gene is mainly expressed in testis and developing central nervous system (CNS). However, the subcellular localization and function of mammalian RSP3 in the developing brain and mammalian cells remain poorly understood. Here we show that the mouse RSP3 accumulates at the perinuclear region of Chinese hamster ovary (CHO) and 293T cells. Detailed analysis shows that the mouse RSP3 is not co-localized with the endoplasmic reticulum or Golgi apparatus markers in CHO cells. Using in utero electroporation, we found that over-expression of mammalian RSP3 increases the percentage of neurons reaching the upper cortical plate. In vivo analysis shows that the mouse RSP3 mainly accumulates in the proximal cytoplasmic dilation of the leading process of the migrating cortical neurons. Furthermore, we find that the mammalian RSP3 concentrates in the ependymal cilia as a component of the cilia. Thus, our data provide the first evidence for the subcellular localization and function of mammalian RSP3 in mammalian cells and developing CNS.  相似文献   

18.
Yuhkoh Satouh  Kazuo Inaba 《FEBS letters》2009,583(13):2201-2207
Radial spokes are T-shaped protein complexes important for the regulation of axonemal dyneins in eukaryotic cilia and flagella. Using a functional proteomics approach, we identified six spoke proteins in sperm flagella of the ascidian Ciona intestinalis. Many of the domain/motif structures in spoke proteins are commonly found in flagella of both Ciona sperm and Chlamydomonas, but interestingly they often distribute over non-orthologous protein components. A novel 116 kDa protein named CMUB116 has both an ubiquitin domain and an IQ motif. It has orthologs in vertebrates, but not in Chlamydomonas. Furthermore, the results obtained by immunological analysis provide strong indication that CMUB116 is located at the stalk of radial spokes, where it is associated with MORN40.

Structured summary

MINT-7148244: CMUB116 (genbank_protein_gi:BAH59277) and MORN40 (genbank_protein_gi:BAH59284) colocalize (MI:0403) by cosedimentation (MI:0027)MINT-7148179: Ci-RSP3 (uniprotkb:Q8T898) physically interacts (MI:0915) with tubulin alpha (uniprotkb:Q8MVT7), LRR37 (uniprotkb:Q8T896), CMUB116 (genbank_protein_gi:BAH59277), Ci-SRP4/6 (genbank_protein_gi:BAH59283), AK58 (genbank_protein_gi:BAM59278), tubulin beta (genbank_protein_gi:XP_002130315), NDK/DPY26 (genbank_protein_gi:BAH59279), MORN40 (genbank_protein_gi:BAH59284), ARM37 (genbank_protein_gi:BAH59280), NDK/DPY26 (genbank_protein_gi:NP_001161489), LC8 (genbank_protein_gi:BAH59282) and Ci-RSP9 (genbank_protein_gi:NP_001154962) by anti bait coimmunoprecipitation (MI:0006)MINT-7148272: Ci-RSP3 (uniprotkb:Q8T898) and MORN40 (genbank_protein_gi:BAH59284) colocalize (MI:0403) by cosedimentation (MI:0027)  相似文献   

19.
20.
T-shape radial spokes regulate flagellar beating. However, the precise function and molecular mechanism of these spokes remain unclear. Interestingly, Chlamydomonas reinhardtii flagella lacking a dimeric heat shock protein (HSP) 40 at the spokehead-spokestalk juncture appear normal in length and composition but twitch actively while cells jiggle without procession, resembling a central pair (CP) mutant. HSP40(-) cells begin swimming upon electroporation with recombinant HSP40. Surprisingly, the rescue doesn't require the signature DnaJ domain. Furthermore, the His-Pro-Asp tripeptide that is essential for stimulating HSP70 adenosine triphosphatase diverges in candidate orthologues, including human DnaJB13. Video microscopy reveals hesitance in bend initiation and propagation as well as irregular stalling and stroke switching despite fairly normal waveform. The in vivo evidence suggests that the evolutionarily conserved HSP40 specifically transforms multiple spoke proteins into stable conformation capable of mechanically coupling the CP with dynein motors. This enables 9 + 2 cilia and flagella to bend and switch to generate alternate power strokes and recovery strokes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号