首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used ion-sensitive, double-barrel microelectrodes to measure changes in hepatocyte transmembrane potential (V m), intracellular K+, Cl-, and Na+ activities (a i k, a Cl i and a Na i ), and water volume during l-alanine uptake. Mouse liver slices were superfused with control and experimental Krebs physiological salt solutions. The experimental solution contained 20 m l-alanine, and the control solution was adjusted to the same osmolality (305 mOsm) with added sucrose. Hepatocytes also were loaded with 50 mm tetramethylammonium ion (TMA+) for 10 min. Changes in cell water volume during l-alanine uptake were determined by changes in intracellular, steady-state TMA+ activity measured with the K+ electrode. Hepatocyte control V m was -33±1 mV. l-alanine uptake first depolarized V m by 2±0.2 mV and then hyperpolarized V m by 5 mV to-38±1 mV (n = 16) over 6 to 13 min. During this hyperpolarization, a Na i increased by 30% from 19±2 to 25±3 mm (P < 0.01), and a K i did not change significantly from 83±3 mm. However, with added ouabain (1 mm) l-alanine caused only a 2-mV increase in V m, but now a K i decreased from 61±3 to 54±5 mm (P < 0.05). Hyperpolarization of V m by l-alanine uptake also resulted in a 38% decrease of a Cl i from 20±2 to 12±3 mm (P < 0.001). Changes in V m and V ClV m voltage traces were parallel during the time of l-alanine hyperpolarization, which is consistent with passive distribution of intracellular Cl with the V m in hepatocytes. Added Ba2+ abolished the l-alanineinduced hyperpolarization, and a Cl i remained unchanged. Hepatocyte water volume during l-alanine uptake increased by 12±3%. This swelling did not account for any changes in ion activities following l-alanine uptake. We conclude that hepatocyte a K i is regulated by increased Na+-K+ pump activity during l-alanine uptake in spite of cell swelling and increased V m due to increased K+ conductance. The hyperpolarization of V m during l-alanine uptake provides electromotive force to decrease a Cl i . The latter may contribute to hepatocyte volume regulation during organic solute transport.This work was supported by grant AA-08867 from the Alcohol, Drug Abuse, and Mental Health Association.  相似文献   

2.
Sporosarcina ureae BS 860, a motile, sporeforming coccus, possesses the enzymes required for a functioning urea (ornithine) cycle. This is only the second known example of urea cycle activity in a prokaryote. Specific activities are reported for ornithine carbamoyltransferase, argininosuccinase, arginase, and urease. Although argininosuccinate synthetase activity could not be detected directly in crude cell extracts, indirect evidence from radiocarbon tracing data for arginine synthesis from the substrate, l-[1-14C]-ornithine, strongly suggest the presence of this or other similar enzyme activity. Furthermore, good growth in defined media containing either 1.0% glutamine, ornithine, or citrulline as sole carbon sources suggests argininosuccinate synthetase activity is necessary for arginine synthesis. The effect of varying pH on arginase and urease activities indicate that these two enzymes may function within the context of the urea cycle to generate ammonia for amino acid synthesis, as well as for raising the pH of the growth micro-environment.  相似文献   

3.
Citrullinemia is one of the five aminoacidurias associated with the Krebs-Henseleit urea cycle. A long-term lymphocyte line (UM-21) derived from a patient with this disease and nine of ten clones of this line were found to have no activity for the enzyme argininosuccinate synthetase (AS), as demonstrated by their inability to grow in medium in which citrulline had been substituted for arginine, by their inability to incorporate arginine-C14 derived from citrulline-C14 into cellular protein, and by direct enzyme assay. One clone had normal or nearly normal argininosuccinate synthetase activity, as demonstrated by the same criteria. Nutritional "variants" able to grow logarithmically in medium containing citrulline were isolated from UM-21 and three clones. The apparent Kms of AS for citrulline in UM-21, the ten clones, the variant lines, and a normal line were measured and fell into three groups: AS in UM-21 and nine clones had no measurable apparent Km for citrulline; AS in the variant cells had apparent Kms for citrulline of approximately 20 mM; and AS in the normal cell line and one clone had apparent Kms for citrulline of 0.2 mM. The data suggest that the defect in the citrullinemic cell lines is due to a mutation in the structural gene coding for argininosuccinate synthetase.  相似文献   

4.
λ-Glutamylcysteine synthetase activity (EC 6.3.2.2) was analysed in Sephacryl S-200 eluents of extracts from cell suspension cultures ofNicotiana tabacum L. cv. Samsun by determination of λ-glutamylcysteine as its monobromobimane derivative. The enzyme has a relative molecular mass (Mr) of 60000 and exhibits maximal activity at pH 8 (50% at pH 7.0 and pH9.0) and an absolute requirement for Mg2+. With 0.2mM Cd2+ or Zn2+, enzyme activity was reduced by 35% and 19%, respectively. Treatment with 5 mM dithioerythritol led to a heavy loss of activity and to dissociation into subunits (Mr 34000). Buthionine sulfoximine andl-methionine-sulfoximine, known as potent inhibitors of λ-glutamylcysteine synthetase from mammalian cells, were found to be effective inhibitors of the plant enzyme too. The apparent Km values forl-glutamate,l-cysteine, and α-aminobutyrate were, respectively, 10.4mM, 0.19 mM, and 6.36 mM. The enzyme was completely inhibited by glutathione (Ki=0.42 mM). The data indicate that the rate of glutathione synthesis in vivo may be influenced substantially by the concentration of cysteine and glutamate and may be further regulated by feedback inhibition of λ-glutamylcysteine synthetase by glutathione itself. λ-Glutamylcysteine synthetase is, like glutathione synthetase, localized in chloroplasts as well as in the cytoplasm. Chloroplasts fromPisum sativum L. isolated on a Percoll gradient contained about 72% of the λ-glutamylcysteine synthetase activity in leaf cells and 48% of the total glutathione synthetase activity. In chloroplasts ofSpinacia oleracea L. about 61% of the total λ-glutamylcysteine synthetase activity of the cells were found and 58% of the total glutathione synthetase activity. These results indicate that glutathione synthesis can take place in at least two compartments of the plant cell. Dedicated to Professor A. Prison on the occasion of his 80th birthday  相似文献   

5.
Glutamine synthetase (EC 6.3.1.2) was purified to homogeneity from a free-living nitrogen fixing bacteria, Bacillus polymyxa. The holoenzyme, relative molecular mass (Mr) of 600 000 is composed of monomeric sub-units of 60 000 (Mr). The isoelectric point of the sub-units was 5.2. The pH optimum for the biosynthetic and transferase enzyme activity was 8.2 and 7.8, respectively. The apparent K m values (K m app ) in the biosynthetic reaction for glutamate, NH4Cl and ATP were 3.2, 0.22 and 1 mM, respectively. In the transferase reaction the K m values for glutamine, hydroxylamine and ADP were 6.5, 3.5 and 8×10-4 mM respectively. L-Methionine-D-L-sulfoximine was a very potent inhibitor in both biosynthetic and transferase reactions. Similar to most Gram positive bacteria there was no evidence of in vivo adenylylation and the enzyme seemed to be mainly regulated by feed-back mechanism.Abbreviations PMSF phenylmethylsulfonylfluoride - TCA trichloroacetic acid - GS glutamine synthetase - MSO L-Methionine-D-L-sulfoximine - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis - SVPDE snake venum phosphodiesterase  相似文献   

6.
Summary Na+–H+ exchange activity in renal brush border membrane vesicles isolated from hyperthyroid rats was increased. When examined as a function of [Na+], treatment altered the initial rate of Na+ uptake by increasingV m (hyperthyroid, 18.9±1.1 nmol Na+ · mg–1 · 2 sec–1; normal, 8.9±0.3 nmol Na+ · mg–1 · 2 sec–1), and not the apparent affinityK Na + (hyperthyroid, 7.3±1.7mm; normal, 6.5±0.9mm). When examined as a function of [H+] and at a subsaturating [Na+] (1mm), hyperthyroidism resulted in the proportional increase in Na+ uptake at every intravesicular pH measured. A positive cooperative effect on Na+ uptake was found with increased intravesicular acidity in vesicles from both normal and hyperthyroid rats. When the data were analyzed by the Hill equation, it was found that hyperthyroidism did not change then (hyperthyroid, 1.2±0.06; normal, 1.2±0.07) or the [H+]0.5 (hyperthyroid, 0.39±0.08 m; normal, 0.44±0.07 m) but increased the apparentV m (hyperthyroid, 1.68±0.14 nmol Na+ · mg–1 · 2 sec–1; normal 0.96±0.10 nmol Na+ · mg–1 · 2 sec–1). The uptake of Na+ in exchange for H+ in membrane vesicles from normal and hyperthyroid animals was not influenced by membrane potential. H+ translocation or debinding was rate limiting for Na+–H+ exchange since Na+–Na+ exchange activity was greater than Na+–H+ exchange activity. Hyperthyroidism caused a proportional increase and hypothyroidism caused a proportional decrease in Na+–Na+ and Na+–H+ exchange. We conclude that hyperthyroidism leads to either an increase in the number of functional exchangers in the membrane or exactly proportional increases in the rate-limiting steps for Na+–Na+ and Na+–H+ exchange activity.  相似文献   

7.
The aim of this work was to examine the effects of changes in external K+ concentration (K o ) around its physiological value, of various K+ channels blockers, including internal Cs+, of vacuolar H+-ATPase inhibitors and of the protonophore CCCP on the resting potential and the voltage-dependent K+ current of differentiated neuroblastoma x glioma hybrid NG108-15 cells using the whole-cell patch-clamp technique. The results are as follows: (i) under standard conditions (K o =5 mm) the membrane potential was –60±1 mV. It was unchanged when K o was decreased to 1 mm and was depolarized by 4±1 mV when Ko was increased to 10 mm. (ii) Internal Cs+ depolarized the membrane by 21±3 mV. (iii) The internal application of the vacuolar H+-ATPase inhibitors N-ethylmaleimide (NEM), NO 3 and bafilomycin A1 (BFA) depolarized the membrane by 15±2, 18±2 and 16±2 mV, respectively, (iv) When NEM or BFA were added to the internal medium containing Cs+, the membrane was depolarized by 45±1 and 42±2 mV, respectively. (v) The external application of CCCP induced a transient depolarization followed by a prolonged hyperpolarization. This hyperpolarization was absent in BFA-treated cells. The voltage-dependent K+ current was increased at negative voltages and decreased at positive voltages by NEM, BFA and CCCP. Taken together, these results suggest that under physiological conditions, the resting potential of NG108-15 neuroblastoma cells is maintained at negative values by both voltage-dependent K+ channels and an electrogenic vacuolar type H+-ATPase.This work was supported by a grant from INSERM (CRE 91 0906).  相似文献   

8.
Summary The nucleoside transport activity of human placental syncytiotrophoblast brush-border and basal membrane vesicles was compared. Adenosine and uridine were taken up into an osmotically active space. Adenosine was rapidly metabolized to inosine, metabolism was blocked by preincubating vesicles with 2-deoxycoformycin, and subsequent adenosine uptake studies were performed in the presence of 2-deoxycoformycin. Adenosine influx by brush-border membrane vesicles was fitted to a two-component system consisting of a saturable system with apparent Michaelis-Menten kinetics (apparentK m approx. 150 m) and a linear component. Adenosine uptake by the saturable system was blocked by nitrobenzylthioinosine (NBMPR), dilazep, dipyridamole and other nucleosides. Inhibition by NBMPR was associated with high-affinity binding of NBMPR to the brush-border membrane vesicles (apparentK d 0.98±0.21nm). Binding of NBMPR to these sites was blocked by adenosine, inosine, uridine, thymidine, dilazep and dipyridamole, and the respective apparentK i values were 0.23±0.012, 0.36±0.035, 0.78±0.1, 0.70±0.12 (mm), and 0.12 and 4.2±1.4 (nm). In contrast, adenosine influx by basal membrane vesicles was low (less than 10% of the rate observed with brush-border membrane vesicles under similar conditions), and hence no quantitative studies of adenosine uptake could be performed with these vesicles. Nevertheless, high-affinity NBMPR binding sites were demonstrated in basal membrane vesicles with similar properties to those in brushborder membrane vesicles (apparentK d 1.05±0.13nM and apparentK i values for adenosine, inosine, uridine, thymidine, dilazep and dipyridamole of 0.14±0.045, 0.54±0.046, 1.26±0.20, 1.09±0.18mm and 0.14 and 3.7±0.5nm, respectively). Exposure of both membrane vesicles to UV light in the presence of [3H]NBMPR resulted in covalent labeling of a membrane protein(s) with a broad apparentM r on SDS gel electropherograms of 77,000–45,000, similar to that previously reported for many other tissues, including human erythrocytes. We conclude that the maternal (brush-border) and fetal (basal) surface of the human placental syncytiotrophoblast posses broad-specificity, facilitated-diffusion, NBMPR-sensitive nucleoside transporters.  相似文献   

9.
Human red cell membrane bindings of arachidonate and palmitate at pH 7.3 are investigated at temperatures between 0 and 38°C by equilibrating ghosts with the long-chain fatty acids bound to bovine serum albumin in molar ratios (v) within the physiological range (<1.7). Linearized relations of ghost uptakes and fatty acid monomer concentrations in buffer provide estimates of the binding capacities and corresponding equilibrium dissociation constants (K dm ). The temperature-independent arachidonate binding capacity, 5.5 ± 0.5 nmol g–1 packed ghosts, is approximately fivefold smaller than that of palmitate, 26.6 ± 2.0 nmol g–1. While K dm of arachidonate binding 5.1 ± 0.5 nm is temperature independent, K dm of palmitate increases with temperature from 3.7 nm at 0°C to 12.7 nm at 38°C.The large difference in binding capacities suggests the presence of at least two different fatty acid binding domains in human red cell membranes.  相似文献   

10.
Summary We have measured the intracellular potassium activity, [K+]i and the mechanisms of transcellular K+ transport in reabsorptive sweat duct (RSD) using intracellular ion-sensitive microelectrodes (ISMEs). The mean value of [K+]i in RSD is 79.8±4.1mm (n=39). Under conditions of microperfusion, the [K+]i is above equilibrium across both the basolateral membrane, BLM (5.5 times) and the apical membrane, APM (7.8 times). The Na+/K+ pump inhibitor ouabain reduced [K+]i towards passive distribution across the BLM. However, the [K+]i is insensitive to the Na+/K+/2 Cl cotransport inhibitor bumetanide in the bath. Cl substitution in the lumen had no effect on [K+]i. In contrast, Cl substitution in the bath (basolateral side) depolarized BLM from –26.0±2.6 mV to –4.7*±2.4 mV (n=3;* indicates significant difference) and decreased [K+]i from 76.0±15.2mm to 57.7* ±12.7mm (n=3). Removal of K+ in the bath decreased [K+]i from 76.3±15.0mm to 32.3*±7.6mm (n=4) while depolarizing the BLM from –32.5±4.1 mV to –28.3*±3.0 mV (n=4). Raising the [K+] in the bath by 10-fold increased [K+]i from 81.7±9.0mm to 95.0*±13.5mm and depolarized the BLM from –25.7±2.4 mV to –21.3*±2.9 mV (n=4). The K+ conductance inhibitor, Ba2+, in the bath also increased [K+]i from 85.8±6.7mm to 107.0*±11.5mm (n=4) and depolarized BLM from –25.8±2.2 mV to –17.0*±3.1 mV (n=4). Amiloride at 10–6 m increased [K+]i from 77.5±18.8mm to 98.8*±21.6mm (n=4) and hyperpolarized both the BLM (from –35.5±2.6 mV to –47.8*±4.3 mV) and the APM (from –27.5±1.4 mV to –46.0* ±3.5 mV,n=4). However, amiloride at 10–4 m decreased [K+]i from 64.5±0.9mm to 36.0*±9.9mm and hyperpolarized both the BLM (from –24.7±1.4 mV to –43.5*±4.2 mV) and APM (from –18.3±0.9 mV to –43.5*±4.2 mV,n=6). In contrast to the observations at the BLM, substitution of K+ or application of Ba2+ in the lumen had no effect on the [K+]i or the electrical properties of RSD, indicating the absence of a K+ conductance in the APM. Our results indicate that (i) [K+]i is above equilibrium due to the Na+/K+ pump; (ii) only the BLM has a K+ conductance; (iii) [K+]i is subject to modulation by transport status; (iv) K+ is probably not involved in carrier-mediated ion transport across the cell membranes; and (v) the RSD does not secrete K+ into the lumen.  相似文献   

11.
The level of human erythrocyte (RBC) thiopurine methyltransferase (TPMT) activity is inherited as a monogenic trait. Experiments were performed to determine whether the level of TPMT activity in the human lymphocyte is regulated in parallel with RBC TPMT. Supernatants of lymphocyte homogenates contained TPMT activity. Lymphocyte TPMT activity was maximal at a reaction pH of 6.6. The apparent K m value for 6-mercaptopurine, the thiopurine substrate for the reaction, was 8.1×10–4 m, and the apparent K m value for S-adenosyl-l-methionine, the methyl donor for the reaction, was 3.6×10–6 m. The average TPMT activity in lymphocytes isolated from blood of 55 randomly selected subjects was 11.0±0.4 units/109 cells (mean ± SE), with a range of from 4.8 to 17.7 units/109 cells. There was a significant correlation of relative RBC with relative lymphocyte TPMT activity in blood samples from these 55 subjects, with a correlation coefficient of 0.563 (P<0.001). The correlation coefficient for RBC with platelet enyzme activities in these same subjects was also highly significant (r=0.680, P<0.001). Blood samples from four previously identified subjects who were homozygous for the allele TPMT L, subjects who lacked detectable RBC enzyme activity, also lacked detectable lymphocyte and platelet TPMT activities. These results were compatible with the conclusion that the genetic polymorphism which regulates RBC TPMT activity also regulates the level of human lymphocyte and platelet TPMT activities.Supported in part by NIH Grants GM 28157 and NS 11014. Dr. Weinshilboum is a Burroughs Wellcome Scholar in Clinical Pharmacology.  相似文献   

12.
Summary We have investigated the effect of a purified preparation of Charybdotoxin (CTX) on the Ca-activated K+ (Ca–K) channel of human red cells (RBC). Cytosolic Ca2+ was increased either by ATP depletion or by the Ca ionophore A23187 and incubation in Na+ media containing CaCl2. The Ca–K efflux activated by metabolic depletion was partially (77%) inhibited from 15.8±2.4 mmol/liter cell · hr, to 3.7±1.0 mmol/liter cell · hr by 6nm CTX (n=3). The kinetic of Ca–K efflux was studied by increasing cell ionized Ca2+ using A23187 (60 mol/liter cell), and buffering with EGTA or citrate; initial rates of net K+ efflux (90 mmol/liter cell K+) into Na+ medium containing glucose, ouabain, bumetanide at pH 7.4 were measured. Ca–K efflux increased in a sigmoidal fashion (n of Hill 1.8) when Ca2+ was raised, with aK m of 0.37 m and saturating between 2 and 10 m Ca2+. Ca–K efflux was partially blocked (71±7.8%, mean ±sd,n=17) by CTX with high affinity (IC500.8nm), a finding suggesting that is a high affinity ligand of Ca–K channels. CTX also blocked 72% of the Ca-activated K+ efflux into 75mm K+ medium, which counteracted membrane hyperpolarization, cell acidification and cell shrinkage produced by opening of the K+ channel in Na+ media. CTX did not block Valinomycin-activated K+ efflux into Na+ or K+ medium and therefore it does not inhibit K+ movement coupled to anion conductive permeability.TheV max, but not theK m–Ca of Ca–K efflux showed large individual differences varying between 4.8 and 15.8 mmol/liter cell · min (FU). In red cells with Hb A,V max was 9.36±3.0 FU (mean ±sd,n=17). TheV max of the CTX-sensitive, Ca–K efflux was 6.27±2.5 FU (range 3.4 to 16.4 FU) in Hb A red cells and it was not significantly different in Hb S (6.75±3.2 FU,n=8). Since there is larger fraction of reticulocytes in Hb S red cells, this finding indicates that cell age might not be an important determinant of theV max of Ca–K+ efflux.Estimation of the number of CTX-sensitive Ca-activated K+ channels per cell indicate that there are 1 to 3 channels/per cell either in Hb A or Hb S red cells. The CTX-insensitive K+ efflux (2.7±0.9 FU) may reflect the activity of a different channel, nonspecific changes in permeability or coupling to an anion conductive pathway.  相似文献   

13.
Summary The alpha2-adrenergic antagonist yohimbine (YOH) and the closely related isomers corynanthine (COR) and rauwolscine (RAU) caused brief interruptions in current characteristic of a fast blocker Ca2+-activated K+ channels in cultured medullary thick ascending limb (MTAL) cells. The apparent dissociation constants (K app), for COR, YOH, and RAU, respectively, at the intracellular face of the channel in the presence of 200mm K+ are 45±1, 98±2, and 310±33 m. TheK app for COR on the extracellular side also in the presence of 200mm. K+ was much greater at 1.6±0.17mm. Increasing K+ on the same side as the blocker relieves the blocking reaction. TheK app for the alkaloids varies with K+ in a manner quantitatively consistent with K+ and the alkaloids competing for a common binding site. Finally, blocking by the charged form of these alkaloids is voltage dependent with changes inK app of 86±7 and 94±6 m pere-fold change in voltage for blockers applied either from the inside or outside. The alkaloids block at an electrical distance similar to tetraethylammonium, suggesting that the site within the channel pore of these molecules may be similar.  相似文献   

14.
Summary The shifts of current-voltage characteristics of sodium and calcium inward currents produced by changes in the concentration of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+) and in pH of the extracellular solution have been measured on isolated neurons of the molluscHelix pomatia intracellularly perfused with potassium-free solutions. On the basis of these shifts and using Stern's theory (O. Stern, 1924.Z. Electrochem. 30508–516), the binding constants for the ions to charged groups of the outer side of the somatic membrane and the density of the surface charges produced by these groups have been calculated. For groups located in the vicinity of sodium channels we obtainedK Ca=90±10,K Sr=60±10,K Ba=25±5 andK Mg=16±5m –1 at pH=7.7 and for groups located in the vicinity of calcium channelsK Ca=67±10,K Sr=20±5 andK Ba=19±5m –1 at pH=7.0. The same groups bind H+ ions with apparent pK=6.2±0.2 that corresponds toK H=1.6×106 m –1. The density of fixed charges near the sodium channels is 0.17±0.05 e/nm2 (pH=7.7) and near the calcium channels is 0.23±0.05 electrons/nm2 (pH=7.0). From the comparison of the obtained values with the data about binding constants of the same ions to different negatively charged phospholipids, a suggestion is made that just the phophatidylserine is responsible for the surface potential of the outer side of the somatic membrane. It was also shown that the presence of this potential results in a change in the concentration of carrier ions near the membrane which affects the maximal values of the corresponding transmembrane currents.  相似文献   

15.
Summary The transepithelial water permeability in frog urinary bladder is believed to be essentially dependent on the ADH-regulated apical water permeability. To get a better understanding of the transmural water movement, the diffusional water permeability (P d) of the basolateral membrane of urinary bladder was studied. Access to this post-luminal barrier was made possible by perforating the apical membrane with amphotericin B. The addition of this antibiotic increasedP d from 1.12±0.10×10–4 cm/sec (n=7) to 4.08±0.33×10–4 cm/sec (n=7). The effect of mercuric sulfhydryl reagents, which are commonly used to characterize water channels, was tested on amphotericin B-treated bladders. HgCl2 (10–3 m) decreasedP d by 52% andpara-chloromercuribenzoic acid (pCMB) (1.4×10–4 m) by 34%. The activation energy for the diffusional water transport was found to increase from 4.52±0.23 kcal/mol (n=3), in the control situation, to 9.99±0.91 kcal/mol (n=4) in the presence of 1.4×10–4 m pCMB. Our second approach was to measure the kinetics of water efflux, by stop-flow light scattering, on isolated epithelial cells from urinary bladders.pCMB (0.5 or 1.4×10–4 m) was found to inhibit water exit by 91±2%. These data strongly support the existence of proteins responsible for water transport across the basolateral membrane, which are permanently present.  相似文献   

16.
Hepatocytes exhibit a regulatory volume decrease (RVD) during hypotonic shock, which comprises loss of intracellular K+ and Cl accompanied by hyperpolarization of transmembrane potential (V m ) due to an increase in membrane K+ conductance, (G K). To examine hepatocyte K+ homeostasis during RVD, double-barrel, K+-selective microelectrodes were used to measure changes in steady-state intracellular K+ activity (a K i ) and V m during hyposmotic stress. Cell water volume change was evaluated by measuring changes in intracellular tetramethylammonium (TMA+). Liver slices were superfused with modified Krebs physiological salt solution. Hyposmolality (0.8×300 mosm) was created by a 50 mm step-decrease of external sucrose concentration. Hepatocyte V m hyperpolarized by 19 mV from –27 ± 1 to –46 ± 1 mV and a K i decreased by 14% from 91 ± 4 to 78 ± 4 mm when slices were exposed to hyposmotic stress for 4–5 min. Both V m and a K i returned to control level after restoring isosmotic solution. In paired measurements, hypotonic stress induced similar changes in V m and a K i both control and added ouabain (1 mm) conditions, and these values returned to their control level after the osmotic stress. In another paired measurement, hypotonic shock first induced an 18-mV increase in V m and a 15% decrease in a K i in control condition. After loading hepatocytes with TMA+, the same hypotonic shock induced a 14-mV increase in V m and a 14% decrease in a TMA i . This accounted for a 17% increase of intracellular water volume, which was identical to the cell water volume change obtained when a K i was used as the marker. Nonetheless, hyposmotic stress-induced changes in V m and a K i were blocked partly by Ba2+ (2 mm). We conclude that (i) hepatocyte V m increases and a K i decreases during hypotonic shock; (ii) the changes in hepatocyte V m and a K i during and after hypotonic shock are independent of the Na+-K+ pump; (iii) the decrease in a K i during hypotonic stress results principally from hepatocyte swelling.This work was supported by grant AA-08867 from the Alcohol, Drug Abuse, and Mental Health Association.  相似文献   

17.
Human lymphoblasts in long-term culture have the enzyme activities necessary to convert citrulline to arginine: argininosuccinate synthetase and argininosuccinate lyase. Upon transfer from arginine-supplemented to citrulline-supplemented medium, lymphoblasts exhibit a lag period before resuming exponential growth. During this lag the specific activity of argininosuccinate synthetase increases an average of 60-fold. Argininosuccinate lyase activity remains unchanged. If normal lymphoblasts are starved in arginine-deficient medium without citrulline or if argininosuccinate lyase--deficient lymphoblasts are transferred to citrulline-containing medium, argininosuccinate synthetase activity increases linearly for several days and reaches even higher levels. Cycloheximide blocks the increase in enzyme activity. Cells grown in citrulline medium and pulse labeled with 35S-methionine incorporate more 35S-methionine into argininosuccinate synthetase protein than cells grown in arginine; the rate of disappearance of radioactively labeled enzyme is the same in citrulline- and arginine-grown cells. Arginine or a closely related metabolite thus appears to repress the synthesis of argininosuccinate synthetase of human lymphoblasts in culture.  相似文献   

18.
This paper deals with enzymological, immunochemical and molecular genetic analyses of citrullinemia and argininosuccinic aciduria. Citrullinemia has been classified by Saheki et al. [J. inher. Metab. Dis. 8: 155-156, 1985] into three types from the properties of the deficient argininosuccinate synthetase (ASS) of the patients. Analysis of hepatic mRNA coding for ASS revealed certain characteristics in type II and III citrullinemic patients whose hepatic ASS protein was low. A newly developed enzyme-linked immunosorbent assay (ELISA) of argininosuccinate lyase (ASL) protein showed that 8 out of ten cases of argininosuccinic aciduria had no detectable ASL protein in the liver, erythrocytes, cultured skin fibroblasts or cultured amniocytes.  相似文献   

19.
d-Aspartate (d-Asp) uptake by suspensions of cerebral rat brain astrocytes (RBA) maintained in long-term culture was studied as a means of characterizing function and regulation of Glutamate/Aspartate (Glu/Asp) transporter isoforms in the cells. d-Asp influx is Na+-dependent with K m = 5 μm and V max= 0.7 nmoles · min−1· mg protein−1. Influx is sigmoidal as f[Na+] with Na+ K m ∼ 12 μm and Hill coefficient of 1.9. The cells establish steady-state d-Asp gradients >3,000-fold. Phorbol ester (PMA) enhances uptake, and gradients near 6,000-fold are achieved due to a 2-fold increase in V max, with no change in K m . At initial [d-Asp] = 10 μm, RBA take up more than 90% of total d-Asp, and extracellular levels are reduced to levels below 1 μm. Ionophores that dissipate the ΔμNa+ inhibit gradient formation. Genistein (GEN, 100 μm), a PTK inhibitor, causes a 40% decrease in d-Asp. Inactive analogs of PMA (4α-PMA) and GEN (daidzein) have no detectable effect, although the stimulatory PMA response still occurs when GEN is present. Further specificity of action is indicated by the fact that PMA has no effect on Na+-coupled ALA uptake, but GEN is stimulatory. d-Asp uptake is strongly inhibited by serine-O-sulfate (S-O-S), threohydroxy-aspartate (THA), l-Asp, and l-Glu, but not by d-Glu, kainic acid (KA), or dihydrokainate (DHK), an inhibition pattern characteristic of GLAST and EAAC1 transporter isoforms. mRNA for both isoforms was detected by RT-PCR, and Western blotting with appropriate antibodies shows that both proteins are expressed in these cells. Received: 11 January 2001/Revised: 26 March 2001  相似文献   

20.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号