首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Cowpea ( Vigna unguiculata L. Walp.) seedlings (3-day-old) were subjected to 4 kinds of experimental treatments: (1) control without exposure to any stress (−D-UV), (2) moderate water stress with no UV-B irradiation (+D-UV), (3) no water stress but to UV-B radiation (−D+UV). and (4)moderate water stress and exposure to UV-B (+D+UV). UV-B and drought stress in the combined form elicited beneficial effects on the morphological and growth characteristics, and a few additive inhibitory effects in some functional processes. An increase in the specific leaf weight (SLW) was observed in the combination of stresses, which could be a defence mechanism against UV-B. The combination of stresses promoted the synthesis of anthocyanins and phenolic compounds. The responses of plants to the combination of stresses indicate that during simultaneous exposure of plants to multiple stresses, one form of stress could minimize the damage by the other. The enhancement of superoxide dismutase (SOD) and catalase activities appear to serve as acclimation mechanisms to scavenge the toxic, free radicals of oxygen produced under stress conditions. However, the inhibition in nitrate metabolism was greater in the combined stresses than in either of the stresses imposed separately. The results of this study illustrate that the interaction of stresses during simultaneous multiple stress conditions brings out certain beneficial effects.  相似文献   

2.
Plants may activate similar defence systems to reduce cellular damages caused by different stress conditions. In the present experiments, the formation of lipid peroxidation products [thiobarbituric acid reactive species (TBARS)] was significant during both drought and ultraviolet (UV)‐B stresses, whereas the formation of reactive oxygen species (ROS) was a more delayed response to UV‐B than to drought. H2O2 was detected during both stresses, whereas ·OH radical production was a more characteristic response to drought. The present characterization of transgenic tobacco plants revealed a common role for aldose/aldehyde reductase (ALR) in the detoxification of lipid peroxidation products under water depletion and UV‐B irradiation. As the result of the increased synthesis of ALR enzyme, the transformed plants were more tolerant to both stress conditions, exhibiting reduced loss of photosynthetic function and decreased accumulation of TBARS and H2O2 as compared to control (SR1) plants. When plants had been exposed to mild, non‐lethal drought and were then watered again to recover, they were more tolerant to a subsequent stress by UV‐B. This was characteristic to both transgenic and wild‐type plants. However, this drought‐induced cross‐tolerance to UV‐B stress of SR1 tobacco did not reach the enhancement achieved by the overexpression of ALR.  相似文献   

3.
To test the hypothesis that leaf surface wax influences plant responses to UV-B, 6 lines of cultivated pea (Pisum sativum L.), selected as having more or less wax, were grown at 0 or 6.5 kJ m-2 day-1 plant-weighted UV-B against a background of 850–950 μmol m-2 s-1 photosynthetically active radiation. In the 4 lines with least leaf surface wax the amount of wax on adaxial and abaxial leaf surfaces was increased following exposure to 6.5 kJ m-2 day-1 UV-B, but UV-B decreased surface wax in Scout, which had the greatest wax deposits. On the adaxial leaf surface, UV-B radiation caused a shift in wax composition from alcohols to esters and hydrocarbons and the ratio of short to long chain length alkyl ester homologues was increased. There was no evidence of a shortening in carbon chain length of hydrocarbons, primary alcohols or fatty acids due to UV-B and no significant correlation between wax amount and UV reflectance from leaves. UV-B induced significant increases in UV-absorbing compounds in the expanded leaves and buds of most lines. UV-B reduced the growth of all lines. Foliage area (leaves plus stipules) declined by 5–30%, plant dry weight by 12–30%, and plant height by 24–38%. Reductions in growth occurred in the absence of any changes in chlorophyll fluorescence or photosynthetic rate. UV-B also had no major effect on carbon allocation patterns. The effects of UV-B on growth appeared to be due to changes in tissue extension and expansion. Indeed, many of the responses to UV-B observed in this study of pea appear more consistent with indirect effects being expressed in developing tissues rather than through the direct action of UV-B on mature tissues. There was no evidence that wax amount or biochemistry was associated with the sensitivity of the lines to UV-B radiation. Furthermore, induction of pigments was not correlated with changes in growth. However, lines with the greatest constitutive amounts of pigments in unexpanded bud tissues were most tolerant of elevated UV-B.  相似文献   

4.
The impact of elevated ultraviolet-B radiation (UV-B, 280–320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings were grown in a greenhouse for 10 days and then treated with biologically effective UV-B (UV-BBE) radiation for 28 days. Oxidative stress effects were evaluated by measuring superoxide anion (O2) generation rate, hydrogen peroxide (H2O2) content, malondialdehyde (MDA) concentration and relative electrolyte conductivity (EC) for IR74 and Dular at 0 (control), 6 or 13 kJ m?2 day?1 UV-BBE. Significant increases in these parameters were found in rice plants grown at 13 vs 0 kJ m?2 day?1 UV-BBE after 28 days; indicating that disruption of membrane systems may be an eventual reason for UV-B-induced injury in rice plants. There was a positive correlation between O2? generation and increases in EC or MDA in leaves. Activities of enzymatic and nonenzymatic free radical scavengers were measured for IR74 after 7, 14, 21 and 28 days of exposure to 13 or 0 UV-BBE to evaluate dynamics of these responses over time. Activities of catalase and superoxide dismutase (but not ascorbate peroxidase) and concentrations of ascorbic acid and glutathione were enhanced by 13 vs 0 UV-BBE after 14 days of UV-B exposure. Further exposure to 28 days of UV-B was associated with a decline in enzyme activities and ascorbic acid, but not glutathione. It is suggested that UV-B-induced injury may be associated with disturbance of active oxygen metabolism through the destruction and alteration of both enzymatic and nonenzymatic defense systems in rice.  相似文献   

5.
Sugar beet ( Beta vulgaris L.) plants injected with Cercospora beticota Sace. as well as non-infected plants were grown under visible light with or without ultraviolet-B (UV-B, 280–320 nm) radiation for 40 days. An interaction between UV-B radiation and Cercospora leaf spot disease was observed, resulting in a large reduction in leaf chlorophyll content, dry weight of leaf laminae, petioles and storage roots. Lipid peraxidation in leaves also increased the most under the combined treatments. This was also true for ultraweak luminescence from both adaxial and abaxial leaf surfaces. However, no correlation between lipid peroxidation and ultraweak luminescence was observed. Ultraviolet-B radiation given alone appeared to have either a stimulating effect, giving an increase in dry weight of laminae and reducing lipid peroxidation, or no effect. This lack of effect was seen in the absence of change in dry weight of storage roots and chlorophyll content relative to controls. The :study demonstrated a harmful interaction between UV-B radiation and Cercospom leaf spot disease on sugar beet.  相似文献   

6.
We studied the impact of mild and severe drought stresses for 42 days and rehydration for 21 days on 4-year-old seedlings of Norway spruce. Water relations in spruce tissues were determined on the basis relative water content of needles and shoot water potential (Ψshoot). During the stress, we measured the level of: reactive oxygen species (ROS), antioxidants, and degradation of cell membranes. In the seedlings subjected to severe stress, Ψshoot decreased to −2.4 MPa, while in those subjected to mild stress, to −0.8 MPa. After rehydration, shoot water potential increased, but did not reach the control level. Water deficit caused oxidative stress, reflected in an increased production of ROS: superoxide anion radical ( ) and hydrogen peroxide (H2O2). Their concentrations in needles were the highest in seedlings subjected to severe stress, where they exceeded the control level by 116% and 30%, respectively. During rehydration, the differences in ROS levels between treated and control seedlings diminished. Oxidative stress causing degradation of cell membranes included: de-esterification of phospholipids, oxidation of fatty acids, and increase in concentration of malondialdehyde, as their permeability to ions increased by 125%. In the defence against the oxidative stress in needles, an important role was played by low-molecule antioxidants such as glutathione, ascorbic acid, flavonoids, α-tocopherol and antioxidant enzymes. An increase in intensity of water deficit caused a significant reductio in the level of low-molecular antioxidants, which attests to their utilization during the process of scavenging for free radicals. Water deficit at Ψshoot=−1.7 MPa caused a decline in ascorbic acid level by 37% in needle cells. An effective defensive mechanism removing the excess of ROS was also reflected in the activity of the main enzymes of oxidative stress: superoxide dismutase (SOD) and guaiacol peroxidase (PO). As a result of water deficit, SOD activity increased by 80 %, while PO activity decreased by 82 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号