首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
To identify regions on the large T antigens of simian virus 40 (SV40) and polyomavirus which are involved in oncogenic transformation, we constructed plasmids encoding hybrid polyomavirus-SV40 large T antigens. The hybrid T antigens were expressed in G418 sulfate-resistant pools of rat F2408 cells, and extracts of such pools were immunoprecipitated with an antibody against p53. Two hybrid T antigens containing SV40 amino acids 337 to 708 bound to p53, whereas another hybrid T antigen containing SV40 amino acids 412 to 708 did not. This suggests that a binding domain on SV40 large T antigen for p53 is contained within amino acids 337 to 708, with amino acids 337 to 411 playing an important role. One of the two hybrids that bound to p53 was chosen for further study. This T antigen contained SV40 large T antigen amino acids 336 to 708 joined to polyomavirus large T antigen amino acids 1 to 521 (PyT1-521-SVT336-708). Immunoprecipitation with antibodies directed against the product of the retinoblastoma susceptibility gene, p105-RB, showed that this hybrid bound p105-RB as well as p53. Pools expressing the hybrid PyT1-521-SVT336-708 did not grow in soft agar, nor did they form foci on confluent monolayers of nontransformed F2408 cells. The hybrid T antigen was expressed at levels comparable to those seen in retrovirus-infected F2408 cells expressing only SV40 large T antigen, which do show a transformed phenotype. Thus, this level of expression was sufficient for transformation by SV40 large T antigen but not for the hybrid large T antigen. These data, combined with genetic studies from other laboratories, suggest that complex formation with p53 and p105-RB is necessary but not sufficient for the oncogenic potential of papovavirus large T antigens.  相似文献   

2.
J Zhu  P W Rice  L Gorsch  M Abate    C N Cole 《Journal of virology》1992,66(5):2780-2791
Mouse C3H 10T1/2 cells and the established rat embryo fibroblast cell line REF-52 are two cell lines widely used in studies of viral transformation. Studies have shown that transformation of 10T1/2 cells requires only the amino-terminal 121 amino acids of simian virus 40 (SV40) large T antigen, while transformation of REF-52 cells requires considerably more of large T antigen, extending from near the N terminus to beyond residue 600. The ability of a large set of linker insertion, small deletion, and point mutants of SV40 T antigen to transform these two cell lines and to bind p105Rb was determined. Transformation of 10T1/2 cells was greatly reduced by mutations within the first exon of the gene for large T antigen but was only modestly affected by mutations affecting the p105Rb binding site or the p53 binding region. All mutants defective for transformation of 10T1/2 cells were also defective for transformation of REF-52 cells. In addition, mutants whose T antigens had alterations in the Rb binding site showed a substantial reduction in transformation of REF-52 cells, and the degree of this reduction could be correlated with the ability of the mutant T antigens to bind p105Rb. There was a tight correlation between the ability of mutants to transform REF-52 cells and the ability of their T antigens to bind p53. These results demonstrate that multiple regions of large T antigen are required for full transformation by SV40.  相似文献   

3.
F Tiemann  J Zerrahn    W Deppert 《Journal of virology》1995,69(10):6115-6121
Metabolic stabilization of the tumor suppressor p53 is a key event in cellular transformation by simian virus 40 (SV40). Expression of the SV40 large tumor antigen (large T) is necessary but not sufficient for this process, as metabolic stabilization of p53 complexed to large T in abortively SV40-infected cells strictly depends on the cellular systems analyzed (F. Tiemann and W. Deppert, J. Virol. 68:2869-2878, 1994). Comparative analyses of various cells differing in metabolic stabilization of p53 upon abortive infection with SV40 revealed that metabolic stabilization of p53 closely correlated with expression of the SV40 small t antigen (small t) in these cells: 3T3 cells do not express small t and do not stabilize p53 upon infection with wild-type SV40. However, ectopic expression of small t in 3T3 cells provided these cells with the capacity to stabilize p53 upon SV40 infection. Conversely, precrisis mouse embryo cells express small t and mediate metabolic stabilization of p53 upon infection with wild-type SV40. Infection of these cells with an SV40 small-t deletion mutant did not lead to metabolic stabilization of p53. Small-t expression and metabolic stabilization of p53 correlated with an enhanced transformation efficiency by SV40, supporting the conclusion that at least part of the documented helper effect of small t in SV40 transformation is its ability to promote metabolic stabilization of p53 complexed to large T.  相似文献   

4.
Simian virus (SV) 40 large T antigen can both induce tumors and inhibit cellular differentiation. It is not clear whether these cellular changes are synonymous, sequential, or distinct responses to the protein. T antigen is known to bind to p53, to the retinoblastoma (Rb) family of tumor suppressor proteins, and to other cellular proteins such as p300 family members. To test whether SV40 large T antigen inhibits cellular differentiation in vivo in the absence of cell cycle induction, we generated transgenic mice that express in the lens a mutant version of the early region of SV40. This mutant, which we term E107KDelta, has a deletion that eliminates synthesis of small t antigen and a point mutation (E107K) that results in loss of the ability to bind to Rb family members. At embryonic day 15.5 (E15.5), the transgenic lenses show dramatic defects in lens fiber cell differentiation. The fiber cells become post-mitotic, but do not elongate properly. The cells show a dramatic reduction in expression of their beta- and gamma-crystallins. Because CBP and p300 are co-activators for crystallin gene expression, we assayed for interactions between E107KDelta and CBP/p300. Our studies demonstrate that cellular differentiation can be inhibited by SV40 large T antigen in the absence of pRb inactivation, and that interaction of large T antigen with CBP/p300 may be enhanced by a mutation that eliminates the binding to pRb.  相似文献   

5.
It is known that large T antigen, the regulatory protein encoded by Simian virus 40 (SV40), forms tight complexes with the cellular p53 protein in SV40-transformed rodent cells. Using immunoaffinity procedures we have purified large T antigen and, in separate experiments, the cellular p53 protein. The two proteins formed complexes in vitro which bound well to double-stranded DNA fragments although in a sequence-unspecific manner. Free, uncomplexed T antigen readily converted double-stranded DNA into a single-stranded form whereas in-vitro-formed p53-T-antigen complexes were inactive in this reaction. We conclude that one function of p53 in SV40-transformed mouse cells could be the inhibition of the replication initiating activity of T antigen.  相似文献   

6.
Interactions between SV40 T antigen and DNA polymerase alpha   总被引:16,自引:0,他引:16  
Simian virus 40 large T antigen is the only viral protein required for SV40 DNA synthesis in vivo and in vitro. This complex protein recruits the cellular DNA replication apparatus to the SV40 origin and provides a good model for the initiation of cellular DNA replication. The interaction between SV40 large T antigen (TAg) and DNA polymerase alpha has been shown previously to be inhibited by murine p53, the nuclear protein product of a cellular anti-oncogene. The murine p53 protein will inhibit SV40 replication both in vivo and in vitro. Using monoclonal antibodies to TAg, p53, and polymerase alpha, we developed immunoassays to measure the complexes formed between TAg and polymerase alpha and between TAg and p53. The assays allowed us to detect the TAg-polymerase alpha and TAg-p53 complexes in lytically infected and transformed cells. The amount of TAg complexed to p53 was far lower in infected cells than in transformed cells. We used a large range of monoclonal antibodies to different sites on T antigen and found that antibodies that inhibited the formation of the TAg-polymerase alpha complex also inhibited the formation of the TAg-p53 complex. Finally, we found that the tsA58 and 5080 point mutations in TAg, previously shown to inhibit the binding of TAg to p53, also inhibit its binding to polymerase alpha. Together these results emphasize the specificity and functional importance of the TAg-polymerase alpha complex. The disruption of this interaction by the cellular anti-oncogene p53 provides an interesting model for the normal action of p53 and the effects of its removal on the regulation of cellular DNA synthesis.  相似文献   

7.
In addition to Rb and p53, a third cellular protein, p120 in monkey and p118 in human cells, forms a specific complex with SV40 large T antigen (T). p118/120 is not a product of the Rb-gene. As was shown with T/Rb complex formation, the interaction between T and p120 is dependent on the intact nature of a ten residue, transformation-controlling domain in T (residues 105-114). In mouse cells, a readily detectable protein of 115 kd was detected, which, like murine Rb, also forms a stable complex with T. Like p118/120, p115 binding is also dependent on the intact nature of the 105-114 sequence. Given their similar size and T antigen binding sequence dependence, p115 and p118/120 may be products of the same gene in different species. These results suggest that interactions between T and p115/118/120, as well as T and Rb, contribute to the SV40 transforming mechanism.  相似文献   

8.
To determine functional subcellular loci of p53, a cellular protein associated with cellular transformation, we analyzed the nucleoplasmic, chromatin, and nuclear matrix fractions from normal mouse 3T3 cells, from methylcholanthren-transformed mouse (MethA) cells, and from various simian virus 40 (SV40)-transformed cells for the presence of p53. In 3T3 and MethA cells, p53 was present in all nuclear subfractions, suggesting an association of p53 with different structural components of the nucleus. In 3T3 cells, p53 was rapidly turned over, whereas in MethA cells, p53 was metabolically stable. In SV40-transformed cells, p53 complexed to large tumor antigen (large T) was found in the nucleoplasmic and nuclear matrix fractions, as described previously (M. Staufenbiel and W. Deppert, Cell 33:173-181, 1983). In addition, however, metabolically stable p53 not complexed to large T (free p53) was also found in the chromatin and nuclear matrix fractions of these cells. This free p53 did not arise by dissociation of large T-p53 complexes, suggesting that stabilization of p53 in SV40-transformed cells can also occur by means other than formation of a complex with large T.  相似文献   

9.
An expression vector utilizing the enhancer and promoter region of the simian virus 40 (SV40) DNA regulating a murine p53 cDNA clone was constructed. The vector produced murine p53 protein in monkey cells identified by five different monoclonal antibodies, three of which were specific for the murine form of p53. The murine p53 produced in monkey cells formed an oligomeric protein complex with the SV40 large tumor antigen. A large number of deletion mutations, in-frame linker insertion mutations, and linker insertion mutations resulting in a frameshift mutation were constructed in the cDNA coding portion of the p53 protein expression vector. The wild-type and mutant p53 cDNA vectors were expressed in monkey cells producing the SV40 large T antigen. The conformation and levels of p53 protein and its ability to form protein complexes with the SV40 T antigen were determined by using five different monoclonal antibodies with quite distinct epitope recognition sites. Insertion mutations between amino acid residues 123 and 215 (of a total of 390 amino acids) eliminated the ability of murine p53 to bind to the SV40 large T antigen. Deletion (at amino acids 11 through 33) and insertion mutations (amino acids 222 through 344) located on either side of this T-antigen-binding protein domain produced a murine p53 protein that bound to the SV40 large T antigen. The same five insertion mutations that failed to bind with the SV40 large T antigen also failed to react with a specific monoclonal antibody, PAb246. In contrast, six additional deletion and insertion mutations that produced p53 protein that did bind with T antigen were each recognized by PAb246. The proposed epitope for PAb246 has been mapped adjacent (amino acids 88 through 109) to the T-antigen-binding domain (amino acids 123 through 215) localized by the mutations mapped in this study. Finally, some insertion mutations that produced a protein that failed to bind to the SV40 T antigen appeared to have an enhanced ability to complex with a 68-kilodalton cellular protein in monkey cells.  相似文献   

10.
We analyzed the relation of metabolic stabilization of the p53 protein during cellular transformation by simian virus 40 (SV40) to (i) expression of the transformed phenotype and (ii) expression of the large tumor antigen (large T). Analysis of SV40-tsA28-mutant-transformed rat cells (tsA28.3 cells) showed that both p53 complexed to large T and free p53 (W. Deppert and M. Haug, Mol. Cell. Biol. 6:2233-2240, 1986) were metabolically stable when the cells were cultured at 32 degrees C and expressed large T and the transformed phenotype. At the nonpermissive temperature (39 degrees C), large-T expression is shut off in these cells and they revert to the normal phenotype. In such cells, p53 was metabolically unstable, like p53 in untransformed cells. To determine whether metabolic stabilization of p53 is directly controlled by large T, we next analyzed the metabolic stability of complexed and free p53 in SV40 abortively infected normal BALB/c mouse 3T3 cells. We found that neither p53 in complex with large T nor free p53 was metabolically stable. However, both forms of p53 were stabilized in SV40-transformed cells which had been developed in parallel from SV40 abortively infected cultures. Our results indicate that neither formation of a complex of p53 with large T nor large-T expression as such is sufficient for a significant metabolic stabilization of p53. Therefore, we suggest that metabolic stabilization of p53 during cellular transformation with SV40 is mediated by a cellular process and probably is the consequence of the large-T-induced transformed phenotype.  相似文献   

11.
To understand the process and biological significance of metabolic stabilization of p53 during simian virus 40 (SV40)-induced cellular transformation, we analyzed cellular and viral parameters involved in this process. We demonstrate that neither large T expression as such nor the cellular phenotype (normal versus transformed) markedly influence the stability of p53 complexed to large T in SV40 abortively infected BALB/c mouse fibroblasts. In contrast, metabolic stabilization of p53 is an active cellular event, specifically induced by SV40. The ability of SV40 to induce a cellular response leading to stabilization of p53 complexed to large T is independent from the cellular phenotype and greatly varies between different cells. However, metabolic stability was conferred only to p53 in complex with large T, whereas the free p53 in these cells remained metabolically unstable. Comparative analyses of cellular transformation in various cells differing in stability of p53 complexed to large T upon abortive infection with SV40 revealed a strong correlation between the ability of SV40 to induce metabolic stabilization and its transformation efficiency. Our data suggest that metabolic stabilization and the ensuing enhanced levels of p53 are important for initiation and/or maintenance of SV40 transformation.  相似文献   

12.
The cellular phosphoprotein p53 is presumably involved in simian virus 40 (SV40)-induced transformation. We have monitored changes in the state of phosphorylation of p53 from normal versus SV40-infected or -transformed cells. In normal cells, p 53 was hardly phosphorylated. Upon infection or transformation, a quantitative and qualitative increase in p53 phosphorylation was observed as revealed by two-dimensional phosphopeptide analysis. This increase was dependent on a functional large T antigen. In rat cells, enhanced phosphorylation of p53 resulted in conversion to a second, electrophoretically distinct form. In cells transformed with transformation-defective mutants, phosphorylation of p53 was reduced and conversion to form 2 was inefficient. These data suggest (i) that SV40 large T antigen induces or activates a protein kinase, one substrate of which is p53, (ii) that transformation-defective mutants are impaired in kinase induction, and (iii) that either a certain phosphorylation state of p53 or the SV40-induced kinase is critical for efficient transformation.  相似文献   

13.
Recombinant retroviruses that transduce the simian virus 40 (SV40) large T antigen or the polyomavirus large T antigen as well as encoding resistance to antibiotic G418 were used to investigate whether these genes alone were sufficient for immortalization of primary cells. The results provided definitive evidence that either viral gene can efficiently establish primary fibroblasts. The capability of the SV40 large T antigen to establish primary fibroblasts was undiminished by a mutation that alters its binding to sequences within the origin of replication. Surprisingly, most of the primary cells established by the expression of the SV40 large T antigen did not have a transformed phenotype. This suggests that transformation by SV40 is not simply due to a high level of expression of the SV40 large T antigen and stabilization of cellular p53.  相似文献   

14.
We have investigated the functional roles of two structural subsets of simian virus 40 (SV40) large T antigen, namely homo-oligomers and complexes with the host cellular p53 protein, for the transformed phenotype. We examined T antigen produced in cells transformed by temperature-sensitive SV40 large T mutants: heat-sensitive or unrestricted SV40 tsA58-transformed rat cells and unrestricted tsA1499 transformants. In both unrestricted cell lines, T antigen was temperature-sensitive only for the formation of fast sedimenting homo-oligomers. Corresponding to our recent observations obtained with tsA1499-infected monkey cells, in tsA1499 transformants large T was competent to form stable T-p53 complexes independently of the temperature. However, T antigen coded for by tsA58, which is heat-sensitive for binding to p53, occurred in stable complexes with this protein in unrestricted tsA58 transformants under all conditions. Furthermore, in both unrestricted transformants T-p53 complexes arise in the absence of homo-oligomers of T antigen. In conclusion, T antigen homo-oligomers are not involved in cell transformation, whereas T-p53 complexes may be involved in the maintenance of this phenotype.  相似文献   

15.
We have compared the ATPase, DNA-binding, and helicase activities of free simian virus 40 (SV40) large T antigen (To) and T antigen complexed with cellular p53 (T+p53). Each activity is essential for productive viral infection. The T+p53 and To fractions were prepared by sequential immunosorption of infected monkey cells with monoclonal antibodies specific for p53 and T antigen. The immune-complexed T fractions were then assayed in parallel. For ATP hydrolysis, the Vmax for T+p53 was 143 nmol of ADP per min per mg of protein, or 18-fold greater than for To. ATP had no effect on the stability of the T+p53 complex. The T+p53 complex was significantly more active than To in hydrolyzing dATP, dGTP, GTP, and UTP. Of the nucleotide substrates tested, the greatest relative increase (T+p53/To) was in hydrolyzing dGTP and GTP. In DNase footprinting assays performed under replication conditions, the T+p53 complex protected regions I, II, and III of origin DNA while equivalent amounts of To protected only regions I and II. Region III is known to contribute to the efficiency of DNA replication and contains the SP1-binding sites of the early viral promoter. The T+p53 fraction was also a more efficient helicase than To, especially with a GC-rich primer and template. Thus, the T+p53 complex has enhanced ATPase, GTPase, DNA-binding, and helicase activities. These findings imply that complex formation between cellular monkey p53 and SV40 T antigen modulates a number of essential activities of T in SV40 productive infection.  相似文献   

16.
Simian virus 40 (SV40) transformed V 11 F 1 clone 1 subclone 7 rat cells (subclone 7) do not synthesize normal-size large T antigen (M(r), 90,000); instead, they produce a 115,000 M(r) super T antigen (115K super T antigen). This super T antigen is SV40 virus coded, and its synthesis results from rearrangement and amplification of integrated viral DNA sequences in subclone 7 (May et al., Nucleic Acids Res. 9:4111-4128, 1981). In this study the functional activities of 115K super T antigen were compared with the functional activities of SV40 large T antigen. Transfection experiments were performed with (i) cosmid SVE 5 Kb and plasmid pSVsT, both containing the super T antigen gene and (ii) plasmids pSV1 and pSV40, both containing the large T antigen gene. Transfection of pSVsT DNA or SVE 5 Kb DNA into secondary cultures of rat kidney cells induced the formation of transformed cell foci with an efficiency that was about 50% of the efficiency of pSV1 DNA or pSV40 DNA. Concomitant with the transforming activity, two other activities were also retained by super T antigen, namely, the ability to enhance the level of host cellular protein p53 and the capacity to bind to p53. In contrast, pSVsT and SVE 5 Kb DNAs were markedly deficient in the capacity to support tsA58 DNA replication in CV1-P cells at a nonpermissive temperature (41 degrees C), as shown by cotransfection experiments. The yield of virus produced in these experiments was 400-fold less than the yield obtained in parallel experiments with pSV40 or pSV1. However, SVE 5 Kb and pSVsT have a functional SV40 replication origin, as shown by their efficient replication in COS 1 cells which provided functional large T antigen. Super T antigen also possesses a specific affinity for sequences of SV40 viral origin. Our results suggest that under certain conditions, evolutionary changes in T antigen take place and that these changes could be restricted to the phenotypic requirement of maintaining a structure that is able to induce cell transformation, to form a complex with p53, and to enhance the cellular level of p53. Therefore, there appears to be a close relationship among the activities of T antigen involved in transforming cells, in binding to p53, and in enhancing the p53 cellular level. Moreover, this set of activities appears to be separable from the replicative ability of T antigen, based on the observation that 115K super T antigen is markedly defective for initiating viral DNA synthesis.  相似文献   

17.
Glutamate binds to both excitatory neurotransmitter binding sites and a Cl(-)-dependent, quisqualate- and cystine-inhibited transport site on brain neurons. The neuroblastoma-primary retina hybrid cells (N18-RE-105) are susceptible to glutamate-induced cytotoxicity. The Cl(-)-dependent transport site to which glutamate and quisqualate (but not kainate or NMDA) bind has a higher affinity for cystine than for glutamate. Lowering cystine concentrations in the cell culture medium results in cytotoxicity similar to that induced by glutamate addition in its morphology, kinetics, and Ca2+ dependence. Glutamate-induced cytotoxicity is directly proportional to its ability to inhibit cystine uptake. Exposure to glutamate (or lowered cystine) causes a decrease in glutathione levels and an accumulation of intracellular peroxides. Like N18-RE-105 cells, primary rat hippocampal neurons (but not glia) in culture degenerate in medium with lowered cystine concentration. Thus, glutamate-induced cytotoxicity in N18-RE-105 cells is due to inhibition of cystine uptake, resulting in lowered glutathione levels leading to oxidative stress and cell death.  相似文献   

18.
To analyze the proposed growth-inhibitory function of wild-type p53, we compared simian virus 40 (SV40) DNA replication in primary rhesus monkey kidney (PRK) cells, which express wild-type p53, and in the established rhesus monkey kidney cell line LLC-MK2, which expresses a mutated p53 that does not complex with large T antigen. SV40 DNA replication proceeded identically in both cell types during the course of infection. Endogenously expressed wild-type p53 thus does not negatively modulate SV40 DNA replication in vivo. We suggest that inhibition of SV40 DNA replication by wild-type p53 in in vitro replication assays is due to grossly elevated ratios of p53 to large T antigen, thus depleting the replication-competent free large T antigen in the assay mixtures by complex formation. In contrast, the ratio of p53 to large T antigen in in vivo replication is low, leaving the majority of large T antigen in a free, replication-competent state.  相似文献   

19.
Glutamate toxicity in the N18-RE-105 neuronal cell line results from the inhibition of high-affinity cystine uptake, which leads to a depletion of glutathione and the accumulation of oxidants. Production of superoxides by one-electron oxidation/reduction of quinones is decreased by NAD(P)H:quinone reductase, an enzyme with DT-diaphorase activity. Using glutamate toxicity in N18-RE-105 cells as a model of neuronal oxidative stress, we report that the degree of glutamate toxicity observed is inversely proportional to quinone reductase activity. Induction of quinone reductase activity by treatment with t-butylhydroquinone reduced glutamate toxicity by up to 80%. In contrast, treatment with the quinone reductase inhibitor dicumarol potentiated the toxic effect of glutamate. Measurement of cellular glutathione indicates that increases in its levels are not responsible for the protective effect of t-butylhydroquinone treatment. Because many types of cell death may involve the formation of oxidants, induction of quinone reductase may be a new strategy to combat neurodegenerative disease.  相似文献   

20.
The simian B-lymphotropic papovavirus (LPV) encodes a large tumor antigen (T antigen) which is 45% identical to both the simian virus 40 (SV40) and the polyomavirus (PyV) large T antigens. In transgenic mice, the transforming properties of the LPV T antigen are similar to those of the SV40 T antigen. However, little is known about its biochemical activities. Since SV40 T antigen forms a complex with and stabilizes the host cell tumor suppressor protein p53 while the PyV large T antigen does not, we characterized the LPV T antigen for its ability to complex p53. We demonstrate an association between LPV T antigen and p53 in both a tumor-derived cell line and BALB/c 3T3 cells transformed in culture. A third protein of approximately 68 kDa which was found associated with the LPV T antigen-p53 complex in tumor-derived cells appears to be heat shock protein 70 (hsp70). The half-life of p53 in all LPV T-antigen-transformed cells was extended significantly; i.e., it was 3 to 7 h compared with 19 minutes in BALB/c 3T3 cells. The half-life of the LPV T antigen itself was 5 to 9 h depending on the cell line origin. That p53 was stabilized because of association with LPV T antigen and not because of mutation was demonstrated with the p53 conformation-dependent monoclonal antibody PAb246. This antibody distinguishes between wild-type p53 (PAb246+) and mutant, oncogenic p53 (PAb246-). Sequential immunoprecipitation showed all detectable p53 to be of the PAb246+ class in each LPV-transformed cell line, suggesting that the stable p53 was indeed wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号