首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bone morphogenetic protein (BMP)-15 is a member of the transforming growth factor beta (TGF-beta) superfamily and is closely related to growth and differentiation factor (GDF)-9, both structurally and functionally. In mammals, BMP-15 is predominantly produced by oocytes and exerts important regulatory functions within the ovary, such as promoting early folliculogenesis, preventing premature luteinization and enhancing cumulus cell expansion. The role of BMP-15 in mammalian ovary differs between monoovulatory and polyovulatory species. Recent studies in zebrafish have provided initial evidence that BMP-15 is also an important regulator of ovarian functions. BMP-15 is produced by the zebrafish ovary throughout follicle development and maturation. In vitro studies using zebrafish follicles have revealed that incubation with recombinant human BMP-15 or over-expression of BMP-15 in oocytes results in an inhibition of gonadotropin- and maturation inducing hormone (MIH)-induced oocyte maturation. Conversely, immnunoneutralization with BMP-15 antiserum or silencing of BMP-15 expression using morpholino antisense oligonueclotides enhances oocyte maturation. A key step in BMP-15 action is the sensitivity of follicles to MIH. In vivo injection of BMP-15 antiserum causes a significant decrease in maturation-incompetent (insensitive to MIH) small early growth phase follicles and a concomitant increase in mature follicles. These findings support a role in BMP-15 in preventing precocious oocyte maturation in zebrafish. We propose that the suppression of premature oocyte maturation by BMP-15 may be important to maintain oocyte quality and subsequent ovulation and fertilization.  相似文献   

3.
4.
Growth differentiation factor 9 (GDF9) is a member of the transforming growth factor β (TGF-β) superfamily with a key role in regulating follicle development. In this study, the GDF9 full-length genomic DNA and cDNA were isolated and characterized from the gibel carp ovary using rapid-amplification of cDNA ends (RACE) and LD-PCR. The full-length genomic DNA and cDNA sequences of GDF9 are 3979 and 2044 bp which code 428 amino acid residues with a specific RKKR protease cleavage site of TGF-β superfamily. Sequence analysis showed that gibel carp was similar to zebrafish and other fish species. Spatio-temporal expression analysis using real-time quantitative PCR revealed that GDF9 mRNA was largely expressed in ovary and testis. GDF9 is mainly present at stage I follicles indicating its important role in early follicles development. The same result was obtained in immunohistochemistry localization of GDF9 protein. Within the follicle, the follicle layer cells were barely expressed whereas GDF9 mRNA was mostly expressed in the oocytes. Supplemented with human chorionic gonadotropin (hCG) in isolated follicles, the expression of GDF9 mRNA was increased firstly and then decreased. The results of this study indicated that GDF9 gene played a role in fish during development of follicles, especially in the early stage follicles.  相似文献   

5.
6.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide originally purified from ovine hypothalamus for its potent activity to stimulate cAMP production. However, its presence and action have also been demonstrated in various peripheral tissues including the ovary. In the zebrafish, two forms of PACAP (PACAP(38)-1, adcyap1a; and PACAP(38)-2, adcyap1b) and three PACAP receptors (PAC(1)-R, adcyap1r1; VPAC(1)-R, vipr1; and VPAC(2)-R, vipr2) were all expressed in the ovary. Interestingly, although both follicle cells and oocytes express adcyap1b, the expression of adcyap1a was restricted to the oocytes only. Among the three receptors, adcyap1r1 and vipr2 were expressed in the oocytes, whereas the expression of vipr1 was exclusively located in the follicle cells. Temporal expression analysis of PACAP ligands and receptors during folliculogenesis suggested that PACAP might play differential roles in regulating follicle growth and maturation through different receptors. The two receptors that are expressed in the oocyte (adcyap1r1 and vipr2) showed a significant increase in expression at the transition from the primary growth (PG) stage to previtellogenic (PV) stage and their levels maintained high during follicle growth. However, when the follicle development approached full-grown (FG) stage, these two receptors both decreased significantly in expression. In contrast, vipr1, the receptor expressed in the follicle cells, showed little change in expression at the PG-PV transition and afterwards during follicle growth; however, its expression surged dramatically at the FG stage prior to oocyte maturation. Based on these results, we hypothesized that PACAP might play dual roles in regulating follicle growth and maturation through different receptors located in different compartments. PACAP may stimulate oocyte growth but block its maturation in early follicles by acting directly on the oocyte via PAC1-R and VPAC2-R, whose expression is dominant in growth phase; however, PACAP may promote oocyte maturation in the maturation phase via VPAC1-R on the follicle cells, whose expression surges in FG follicles prior to maturation and is consistently high in the follicles undergoing final maturation. This hypothesis was further supported by the observation that PACAP promoted maturation of follicle-enclosed oocytes but suppressed spontaneous maturation of denuded oocytes in vitro. This study provides strong evidence for a PACAP-mediated signaling network in the zebrafish ovarian follicle, which may play roles in orchestrating follicle growth and maturation via different types of receptors located in different compartments of the follicle.  相似文献   

7.
Estrogen actions on follicle formation and early follicle development   总被引:4,自引:0,他引:4  
Estradiol-17beta (E(2)) affects late follicular development, whereas primordial follicle differentiation and early activation are believed to be independent of E(2). To test this hypothesis we compared numbers of primordial and primary follicles in wild-type and E(2)-deficient, aromatase knockout (ArKO) mice, and the immunohistochemical staining or mRNA expression of Mullerian inhibiting substance (MIS), Wilms tumor 1 (WT-1), and growth differentiation factor (GDF9), which are known to effect early follicular differentiation. Proliferating cell nuclear antigen (PCNA) staining was a marker of proliferative index. The effects of E(2) replacement for 3 wk in 7-wk-old ArKO and wild-type mice on these parameters were also tested. ArKO mice had reduced numbers of primordial and primary follicles compared with wild-type mice (63%, P < 0.001 and 60%, P = 0.062, respectively). This reduction was not corrected by E(2) treatment, suggesting that E(2) affects the initial formation or activation of primordial follicles. There was a significant increase in the diameters of the oocytes in primordial follicles of ArKO mice compared with mice of the wild type. There were no differences in the immunostaining of MIS, WT-1, and PCNA in primordial and primary follicles between wild-type and ArKO mice. The only difference was as a consequence of Sertoli and Leydig cells that develop in ovaries of ArKO mice. GDF9 mRNA expression was markedly increased in ArKO ovaries. E(2) treatment restored the ovarian follicular morphology in ArKO mice, and consequently the immunostaining patterns, but had no effect on early follicle numbers. In conclusion, E(2) has a role in controlling the size of the oocyte and primordial follicle pool in mice.  相似文献   

8.
In this study, we test the hypothesis that the growth-promoting action of androgens on granulosa cells requires paracrine signaling from the oocyte. Mural granulosa cells (MGCs) from small antral (1-3 mm) prepubertal pig follicles were cultured in the presence or absence of denuded oocytes (DO) from the same follicles to determine whether mitogenic and/or steroidogenic responses, to combinations of FSH, insulin-like growth factor 1 (IGF1), and dihydrotestosterone (DHT) were influenced by oocyte-secreted factors (OSFs). To further explore the identity of such factors we performed the same experiments, substituting growth differentiation factor 9 (GDF9), a known OSF, for the DO. OSFs and GDF9 both potently enhanced IGF1-stimulated proliferation, and inhibited FSH-stimulated progesterone secretion. Alone, DHT had little effect on DNA synthesis, but significantly enhanced the mitogenic effects of OSFs or GDF9 in the presence of IGF1. Denuded oocytes, GDF9, and DHT independently inhibited FSH-stimulated progesterone secretion, and androgen, together with DO or GDF9, caused the most potent steroidogenic inhibition. Focusing on mitogenic effects, we demonstrate that both natural androgen receptor (AR) agonists, testosterone and DHT, dose-dependently augmented the mitogenic activity of DO or GDF9. Antiandrogen (hydroxyflutamide) treatment, which is used to block androgen receptor activity, opposed the interaction between androgen and GDF9. In conclusion, androgens stimulate porcine MGC proliferation in vitro by potentiating the growth-promoting effects of oocytes or GDF9, via a mechanism that involves the AR. These signaling pathways are likely to be important regulators of folliculogenesis in vivo, and may contribute to the excess follicle growth that is observed in androgen-treated female animals.  相似文献   

9.
10.
11.
The development of an ovarian follicle requires a complex set of reciprocal interactions between the oocyte and granulosa cells in order for both types of cells to develop properly. These interactions are largely orchestrated by the oocyte via paracrine factors such as growth differentiation factor 9 (GDF9). To examine these interactions further, a study was conducted of the effects of oocytes at different stages of development on proteins synthesized by mouse granulosa cells during the transition of granulosa cells (GCs) from preantral, secondary (2 degrees ) follicles (2 degrees GCs) to mural granulosa cells (3 degrees GCs) of antral tertiary (3 degrees ) follicles. The ability of recombinant GDF9 to mimic the effects of oocytes was also determined. Effects were evaluated by high- resolution, two-dimensional protein gel electrophoresis coupled to computer-assisted, quantitative gel image analysis. Coculture of the 2 degrees GCs with growing oocytes (GOs) from 2 degrees follicles brought about many of the changes in granulosa cell phenotype associated with the 2 degrees to 3 degrees follicle transition. GDF9 likewise brought about many of these changes, but only a subset of GDF9-affected protein spots were also affected by coculture with GOs. Coculture of 2 degrees GCs with the nearly fully grown oocytes (FGOs) from 3 degrees follicles had a reduced effect on 2 degrees GC phenotype, in comparison with coculture with GOs. For some proteins, oocyte coculture or GDF9 treatment appeared to have opposite effects on 2 degrees GCs and 3 degrees GCs. Additional effects of GDF9 and oocytes were seen in cultures of 2 degrees GCs for proteins other than those that differed between untreated control 2 degrees and 3 degrees GCs. These results indicate that GOs and GDF9 can each induce 2 degrees GCs to shift their phenotype toward that of 3 degrees GCs. The ability of the oocyte to produce this effect is diminished with oocyte development. The transition in the GC phenotype promoted by oocytes appears stable because differences in 2 degrees GCs promoted by oocytes and GDF9 were observed in untreated 3 degrees GCs. We conclude that the influence of the oocyte on GCs changes with the progression of their development, and so too does the response of the GCs to the oocyte. Moreover, by acting on the 2 degrees GCs, GOs are able to influence stably the phenotype of 3 degrees GCs. Thus, at or near the 2 degrees to 3 degrees follicle transition, signals from the growing oocyte contribute to the development of the mural GC phenotype.  相似文献   

12.
Woodlands sheep have a putative genetic mutation (FecX2(W)) that increases ovulation rate. At present, the identity of FecX2(W) is unknown. The trait does not appear to be due to the previously described mutations in bone morphogenetic protein 15 (BMP15), growth differentiation factor 9 (GDF9), or bone morphogenetic protein receptor type 1B (BMPR1B) that affect ovulation rate in sheep. Potentially, FecX2(W) could be an unidentified genetic mutation in BMP15 or in the closely related GDF9, which interacts with BMP15 to control ovarian function. Alternatively, FecX2(W) may affect ovulation rate by changing the expression patterns in the molecular pathways activated by genes known to regulate ovulation rate. The objectives of these experiments were to sequence the complete coding region of the BMP15 and GDF9 genes, determine the patterns of expression of mRNAs encoding GDF9, BMP15, TGFBR1, BMPR1B, and BMPR2 during follicular development, and characterize the follicular populations in ewes heterozygous for the Woodlands mutation and their wild-type contemporaries. No differences in the coding sequences of BMP15 or GDF9 genes were identified that were associated with enhanced ovulation rate. The expression patterns of GDF9 and BMPR2 mRNAs were not different between genotypes. However, expression of BMP15 mRNA was less in oocytes of FecX2(W) ewes in large preantral and antral follicles. Expression of ALK5 mRNA was significantly higher in the oocytes of FecX2(W) ewes, whereas expression of BMPR1B was decreased in both oocytes and granulosa cells of FecX2(W) ewes. FecX2(W) ewes also had increased numbers of antral follicles <1 mm in diameter. These follicles were smaller in average diameter, with the oocytes also being of a smaller mean diameter. Given that a mutation in BMP15 or BMPR1B results in increased ovulation rates in sheep, the differences in expression levels of BMP15 and BMPR1B may play a role in the increase in ovulation rate observed in Woodlands ewes with the FecX2(W) mutation.  相似文献   

13.
14.
生长分化因子9基因的分子生物学   总被引:3,自引:0,他引:3  
吴泽辉  储明星  李学伟 《遗传》2005,27(3):481-486
生长分化因子9是卵母细胞分泌的一种生长因子,它对卵泡的生长分化起着重要作用。本文介绍了生长分化因子9的结构、功能和调控,生长分化因子9基因的克隆及基因结构、发育性表达和作用、定位和多态性,并讨论了该基因与哺乳动物繁殖性能的关系。  相似文献   

15.
Ovarian follicular atresia represents a selection process that ensures the release of only healthy and viable oocytes during ovulation. The transition from preantral to early antral stage is the penultimate stage of development in terms of gonadotropin dependence and follicle destiny (survival/growth vs. atresia). We have examined whether and how oocyte-derived growth differentiation factor 9 (GDF-9) and FSH regulate follicular development and atresia during the preantral to early antral transition, by a novel combination of in vitro gene manipulation (i.e. intraoocyte injection of GDF-9 antisense oligos) and preantral follicle culture. Injection of GDF-9 antisense suppressed basal and FSH-induced preantral follicle growth in vitro, whereas addition of GDF-9 enhanced basal and FSH-induced follicular development. GDF-9 antisense activated caspase-3 and induced apoptosis in cultured preantral follicles, a response attenuated by exogenous GDF-9. GDF-9 increased phospho-Akt content in granulosa cells of early antral follicles. Although granulosa cell apoptosis induced by ceramide was attenuated by the presence of GDF-9, this protective effect of GDF-9 was prevented by the phosphatidylinositol 3-kinase inhibitor LY294002 and a dominant negative form of Akt. Injection of GDF-9 antisense decreased FSH receptor mRNA levels in cultured follicles, a response preventable by the presence of exogenous GDF-9. The data suggest that GDF-9 is antiapoptotic in preantral follicles and protects granulosa cells from undergoing apoptosis via activation of the phosphatidylinositol 3-kinase/Akt pathway. An adequate level of GDF-9 is required for follicular FSH receptor mRNA expression. GDF-9 promotes follicular survival and growth during the preantral to early antral transition by suppressing granulosa cell apoptosis and follicular atresia.  相似文献   

16.
Growth differentiation factor (GDF15) is a distant member of the transforming growth factor-beta superfamily, a diverse group of structurally related proteins that exert multiple effects on cell fate such as on cell growth and differentiation but little is known about GDF15 in these processes. Previously we observed the mature GDF15 to be associated with human prostate carcinogenesis hence prompting us to study GDF15 further. Here we report gdf15 expression both at the RNA and protein levels, in normal prostatic tissues of wild type (wt) and prostatic intraepithelial neoplasia (PIN) of transgenic (Tg) 12T-7s model mice during embryonic, postnatal, and adult prostate formation up to 15 weeks after birth. Dynamic changes in expression, at both the mRNA and protein level, correlated with cell proliferation and differentiation during distinct phases of normal mouse prostate development and alterations in the dynamics of gdf15 expression correlated with the changes in development resulting in PIN formation. Most notably mature gdf15 protein was significantly elevated during hyperplasia and PIN development. Changes in the protein levels did not always correlate well with the mRNA levels. This was more prominent during PIN than during normal prostate development suggesting that this may also be an indicator of disturbed regulation of gdf15 in PIN. We propose that gdf15 is a growth factor with dual function either promoting proliferation or growth arrest and differentiation due most likely to differences in cellular differentiation. Because of the differentiation defect in PIN its epithelium no longer responds to gdf15 by cellular growth arrest as does the normal epithelium and gdf may even stimulate proliferation. The data supports our hypothesis that GDF15 plays a role in the early stages of human prostate cancer.  相似文献   

17.
Chronic psychosocial stress negatively affects ovarian function. Ovarian follicular development is regulated by both pituitary-derived gonadotropins and intraovarian regulatory factors. To date, the suppressive effects of chronic stress on the ovary have been observed to be manifested mainly as an inhibition of gonadotropin release. It is not clear whether there are any other intraovarian regulatory mechanisms involved in this process. Growth and differentiation factor 9 (GDF9) is an important, oocyte-specific paracrine regulator required for follicular development. In this study, the chronic unpredictable mild stress model was used to produce psychosocial stress in mice. The number of different developmental stages of follicles was counted on ovarian sections stained with hematoxylin and eosin. Real-time PCR and Western blotting were used to detect the mRNA and protein levels, respectively, of GDF9. The results show that chronic unpredictable stress inhibits follicular development, increases follicular atresia, and suppresses GDF9 expression. Exogenous gonadotropin treatment partly restores the repressed antral follicular development, but has no effect on the repressed secondary follicular development associated with chronic stress. Treatment with recombinant GDF9 restores secondary follicular development. Cotreatments with GDF9 and gonadotropins restore both secondary and antral follicular development in stressed mice. These findings demonstrate that inhibition of follicular development induced by chronic unpredictable stress is associated with GDF9 and gonadotropin.  相似文献   

18.
Ovarian follicular development is controlled by numerous paracrine and endocrine regulators, including oocyte-derived growth differentiation factor 9 (GDF9), and a localized increase in bioavailable insulin-like growth factor 1 (IGF1). The effects of GDF9 on function of theca cells collected from small (3-6 mm) and large (8-22 mm) ovarian follicles were investigated. In small-follicle theca cells cultured in the presence of both LH and IGF1, GDF9 increased cell numbers and DNA synthesis, as measured by a (3)H-thymidine incorporation assay, and dose-dependently decreased both progesterone and androstenedione production. Theca cells from large follicles had little or no response to GDF9 in terms of cell proliferation or steroid production induced by IGF1. Small-follicle theca cell studies indicated that GDF9 decreased the abundance of LHR and CYP11A1 mRNA in theca cells, but had no effect on IGF1R, STAR, or CYP17A1 mRNA abundance or the percentage of cells staining for CYP17A1 proteins. GDF9 activated similar to mothers against decapentaplegics (SMAD) 2/3-induced CAGA promoter activity in transfected theca cells. Small-follicle theca cells had more ALK5 mRNA than large-follicle theca cells. Small-follicle granulosa cells appeared to have greater GDF9 mRNA abundance than large-follicle granulosa cells, but theca cells had no detectable GDF9 mRNA. We conclude that theca cells from small follicles are more responsive to GDF9 than those from large follicles and that GDF9 mRNA may be produced by granulosa cells in cattle. Because GDF9 increased theca cell proliferation and decreased theca cell steroidogenesis, oocyte- and granulosa cell-derived GDF9 may simultaneously promote theca cell proliferation and prevent premature differentiation of the theca interna during early follicle development.  相似文献   

19.
The aim of this study was to test the hypothesis that both growth differential factor 9 (GDF9) and bone morphogenetic protein (BMP15; also known as GDF9B) are essential for normal ovarian follicular development in mammals with a low ovulation rate phenotype. Sheep (9-10 per group) were immunized with keyhole limpet hemocyanin (KLH; control), a GDF9-specific peptide conjugated to KLH (GDF9 peptide), a BMP15-specific peptide conjugated to KLH (BMP15 peptide), or the mature region of oBMP15 conjugated to KLH (oBMP15 mature protein) for a period of 7 mo and the effects of these treatments on various ovarian parameters such as ovarian follicular development, ovulation rate, and plasma progesterone concentrations evaluated. Also in the present study, we examined, by immunohistochemistry, the cellular localizations of GDF9 and BMP15 proteins in the ovaries of lambs. Both GDF9 and BMP15 proteins were localized specifically within ovarian follicles to the oocyte, thereby establishing for the sheep that the oocyte is the only intraovarian source of these growth factors. Immunization with either GDF9 peptide or BMP15 peptide caused anovulation in 7 of 10 and 9 of 10 ewes, respectively, when assessed at ovarian collection. Most ewes (7 of 10) immunized with oBMP15 mature protein had a least one observable estrus during the experimental period, and ovulation rate at this estrus was higher in these ewes compared with those immunized with KLH alone. In both the KLH-GDF9 peptide- and KLH-BMP15 peptide-treated ewes, histological examination of the ovaries at recovery (i.e., approximately 7 mo after the primary immunization) showed that most animals had few, if any, normal follicles beyond the primary (i.e., type 2) stage of development. In addition, abnormalities such as enlarged oocytes surrounded by a single layer of flattened and/or cuboidal granulosa cells or oocyte-free nodules of granulosa cells were often observed, especially in the anovulatory ewes. Passive immunization of ewes, each given 100 ml of a pool of plasma from the GDF9 peptide- or BMP15 peptide-immunized ewes at 4 days before induction of luteal regression also disrupted ovarian function. The ewes given the plasma against the GDF9 peptide formed 1-2 corpora lutea but 3 of 5 animals did not display normal luteal phase patterns of progesterone concentrations. The effect of plasma against the BMP15 peptide was more dramatic, with 4 of 5 animals failing to ovulate and 3 of 5 ewes lacking surface-visible antral follicles at laparoscopy. By contrast, administration of plasma against KLH did not affect ovulation rate or luteal function in any animal. In conclusion, these findings support the hypothesis that, in mammals with a low ovulation rate phenotype, both oocyte-derived GDF9 and BMP15 proteins are essential for normal follicular development, including both the early and later stages of growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号