首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ciliates exhibit nuclear dimorphism, i.e. they have a germline micronucleus and a somatic macronucleus. Macronuclei are differentiated from mitotic sisters of micronuclei. The macronuclei of "higher ciliates" are polyploid and divide acentromerically ("amitotically"); they differentiate once per life cycle. By contrast, Karyorelict (KR) ciliate macronuclei are nearly diploid and cannot divide; they must differentiate at every cell cycle. Diverse lines of evidence are presented to support the hypothesis that ancestral ciliate macronuclei were incapable of division (as in living karyorelict ciliates) and that higher ciliates gained, perhaps independently more than once, the ability to divide the macronucleus. Selective pressures that could have driven the evolution and macronuclear division and two plausible step-wise pathways for the evolution of macronuclear division are proposed. These hypotheses are relevant to our understanding of amitosis mechanisms, evolution of nuclear dimorphism, and phylogenetic classification of ciliates.  相似文献   

2.
Ciliates exhibit nuclear dimorphism, i.e. they have a germline micronucleus and a somatic macronucleus. Macronuclei are differentiated from mitotic sisters of micronuclei. The macronuclei of "higher ciliates" are polyploid and divide acentromerically ("amitotically"); they differentiate once per life cycle. By contrast, Karyorelict (KR) ciliate macronuclei are nearly diploid and cannot divide; they must differentiate at every cell cycle. Diverse lines of evidence are presented to support the hypothesis that ancestral ciliate macronuclei were incapable of division (as in living karyorelict ciliates) and that higher ciliates gained, perhaps independently more than once, the ability to divide the macronucleus. Selective pressures that could have driven the evolution and macronuclear division and two plausible step-wise pathways for the evolution of macronuclear division are proposed. These hypotheses are relevant to our understanding of amitosis mechanisms, evolution of nuclear dimorphism, and phylogenetic classification of ciliates.  相似文献   

3.
Summary The nuclei ofTracheloraphis crassus were studied using light and electron microscopy combined with Bernhard's RNP staining and pronase digestion. The nuclear apparatus of this species consists of a longitudinal row of 11–43 macronuclei and 4–16 micronuclei. Like in all karyorelictids, the macronuclei are unable to divide and become segregated during cytokinesis; their number is supplemented in every cell cycle by differentiation of several new macronuclei from micronuclei.Each adult macronucleus contains a single compact endonuclear aggregate of several large chromocenters, readily destained with EDTA, and several RNP containing nucleoli. There is continuity between the material of the chromocenters and the decondensed DNP fibrils in the nuclear matrix. The nucleoli contain NORs in the form of fibrillar centers. The endonuclear aggregate includes also groups of RNP granules which are especially resistant to EDTA destaining. A microfibrillar sphere, usually localized at the periphery of the aggregate, contacts one or several nucleoli. The sphere is not bleached with EDTA, and only its periphery becomes digested with pronase. The macronuclear matrix consists of both protein fibrils and pronase-resistant fibrils, the latter being localized at the nuclear periphery.Developing macronuclear primordia contain loose strands of decondensed chromatin; only later they form chromocenters and nucleoli.The micronuclei reproduce by mitosis with typical chromosomes (2n=66). During interphase, they are filled with condensed chromatin which can be bleached with EDTA; they form no nucleoli. Ring-like lamellae, existing in the cavities of the chromatin mass, stain for RNA (after Bernhard) and are pronase-sensitive. These lamellae resemble the kinetochore material conserved during interphase in another karyorelictid ciliate,Trachelocerca geopetiti.  相似文献   

4.
The ciliate Tetrahymena thermophila, having both germ line micronuclei and somatic macronuclei, must possess a specialized nucleocytoplasmic transport system to import proteins into the correct nucleus. To understand how Tetrahymena can target proteins to distinct nuclei, we first characterized FG repeat-containing nucleoporins and found that micro- and macronuclei utilize unique subsets of these proteins. This finding implicates these proteins in the differential permeability of the two nuclei and implies that nuclear pores with discrete specificities are assembled within a single cell. To identify the import machineries that interact with these different pores, we characterized the large families of karyopherin homologs encoded within the genome. Localization studies of 13 putative importin (imp) alpha- and 11 imp beta-like proteins revealed that imp alpha-like proteins are nucleus specific--nine localized to the germ line micronucleus--but that most imp beta-like proteins localized to both types of nuclei. These data suggest that micronucleus-specific proteins are transported by specific imp alpha adapters. The different imp alpha proteins exhibit substantial sequence divergence and do not appear to be simply redundant in function. Disruption of the IMA10 gene encoding an imp alpha-like protein that accumulates in dividing micronuclei results in nuclear division defects and lethality. Thus, nucleus-specific protein import and nuclear function in Tetrahymena are regulated by diverse, specialized karyopherins.  相似文献   

5.
Histone synthesis and deposition into specific classes of nuclei has been investigated in starved and conjugating Tetrahymena. During starvation and early stages of conjugation (between 0 and 5 hr after opposite mating types are mixed), micronuclei selectively lose preexisting micronuclear-specific histones α, β, γ, and H3F. Of these histones, only α appears to accumulate in micronuclear chromatin through active synthesis and deposition during the mating process. Curiously, α is not observed (by stain or label) in young macronuclear anlagen (4C, 10 hr of conjugation). Thus, young macronuclear anlagen are missing all of the histones which are known to be specific to micronuclei of vegetative cells. By 14–16 hr of conjugation, we observe active synthesis and deposition of macronuclear-specific histones, hv1, hv2, and H1, into new macronuclear anlagen (8C). Thus macronuclear differentiation seems well underway by this time of conjugation. It is also in this time period (14–16 hr) that we first detect significant amounts of micronuclear-specific H1-like polypeptides β and γ in micronuclear extracts. These polypeptides do not seem to be synthesized during this period, which suggests that β and γ are derived from a precursor molecule(s). Since these micronuclear-specific histones do not appear in micronuclear chromatin until after other micronuclei have been selected to differentiate as macronuclei, we suspect that micronuclear differentiation is also an important process which occurs in 10–16 hr mating cells. Our results also suggest that proteolytic processing of micronuclear H3S into H3F (which occurs in a cell cycle dependent fashion during vegetative growth) is not operative during most if not all of conjugation. Thus micronuclei of mating cells contain only H3S which also seems consistent with the fact that some micronuclei differentiate into new macronuclei (micronuclear H3S is indistinguishable from macronuclear H3). Interestingly, the only H3 synthesized and deposited into the former macronucleus of mating cells is the relatively minor macronuclear-specific H3-like variant, hv2. These results demonstrate that significant histone rearrangements occur during conjugation in Tetrahymena in a manner consistent with the fact that during conjugation some micronuclei eventually differentiate into new macronuclei. Our results suggest that selective synthesis and deposition of specific histones (and histone variants) plays an important role in the nuclear differentiation process in Tetrahymena. The disappearance of specific histones also raises the possibility that developmentally regulated proteolytic processing of specific histones plays an important (and previously unsuspected) role in this system.  相似文献   

6.
Epigenetic inheritance includes all non-Mendelian inheritance, in fact any inheritance that does not arise from base changes. Ciliates, particularly Paramecium and Tetrahymena, undergo epigenetic changes to their macronuclei when they are formed at nuclear reorganization. Once set, however, they are reproduced in a constant fashion, except for allelic segregations, during vegetative fissions in Tetrahymena and certain life cycle changes in both Paramecium and Tetrahymena. This review is meant to be inclusive, discussing all the known cases of epigenetic changes in macronuclei. They involve virtually all traits. We find that these macronuclear changes are subject to a variety of modifications in the way that they are implemented. They constitute a major feature of ciliate genetics, probably because the separation of generative and vegetative functions to micronuclei and macronuclei makes such changes possible.  相似文献   

7.
The hypotrichous ciliate Keronopsis rubra has ~10 micronuclei and ~100 small macronuclei. DNA synthesis proceeds synchronously in all macronuclei in the 2nd half of the cell cycle which takes about 24 hr at room temperature. A G2 phase is virtually absent, each nucleus dividing as soon as the replication band has passed over it. The micronuclear S phase falls within macronuclear G1 and is followed by immediate division. Comparative cytophotometric measurements of Feulgen-stained preparations indicate that the DNA content of G1 macronuclei is scattered widely in a skewed normal distribution, with a peak corresponding to the DNA content of a G1 micronucleus. Measurements of dividing macronuclei indicate unequal distribution of DNA between daughter nuclei and lead to the conclusion that the units of assortment must be smaller than whole genomes unless the micronucleus is polyploid. After conjugation, a large macronuclear anlage with threads resembling split prophase chromosomes is formed. The threads condense and pass singly into the cytoplasm where they are thought to give rise to the numerous small macronuclei of the vegetative cells.  相似文献   

8.
In this study the characteristics of the synthesis of DNA and RNA in the nuclei of Loxodes were investigated. Loxodes striatus is a primitive ciliate with 2 pairs of structurally differentiated diploid nuclei, the macro- and micronuclei. The macronuclei and differentiated morphologically into a clearly recoginzable central core and an outer zone. To determine DNA and RNA synthesis, individual organisms were analyzed by autoradiography after incubating groups of cells with a 3H-labeled precursor ([3H]thymidine for DNA and [3H]uridine for RNA). The following observations were made: (A) All portions of macro- and micronuclei appeared to contain DNA as judged by the localizations of incorporated [3H]thymidine. (B) The macro- and micronuclei did not synthesize DNA at the same time; moreover, the duration of DNA synthesis in the former was much longer than of the latter nucleus. (C) Replication of DNA in the inner core and outer zone of the macronucleus occurred at separate times with little if any overlap. (D) All of the detectable [3H]uridine incorporation was found in the macronucleus and none in the micronucleus. Within the macronucleus the central core was more heavily labeled. (E) The quantitative differences in the label of the different components synthesis can occur in adult macronuclei. The possible explantion of these results is discussed in the context of the nuclear evolution of ciliates and of recent information on nuclear differentiation.  相似文献   

9.
During the postzygotic period of the sexual cycle (conjugation) in the ciliated protozoan, Tetrahymena, daughter products from a single micronuclear mitotic division develop into new macronuclei (anlagen) or new micronuclei depending upon their cytoplasmic location. In this study we have monitored the status of histone acetylation in synchronous populations of developing nuclei isolated from conjugating cells. Particular attention has been paid to the level of histone acetylation in new macronuclei following their differentiation from micronuclei. Like micronuclei isolated from vegetative cells (Vavra et al., 1982), micronuclei from conjugating cells (5 hr, 10-12 hr, and 15-16 hr) contain little if any acetylated histone and incorporate little postsynthetic acetate under any of our experimental conditions. In contrast, young new macronuclei (4C, 10-12 hr) incorporate significant amounts of acetate in vitro and in vivo provided that sodium butyrate is included during the labeling period. These results suggest that 4C anlagen contain both active acetylase and deacetylase activities even though the actual steady state level of acetylation found in these nuclei is low, more like that of micronuclei. At later stages of macronuclear maturation (8C, 15-16 hr), inner histones are hyperacetylated in a manner similar to parental, fully differentiated macronuclei. Furthermore, 8C anlagen incorporate acetate well even in the absence of sodium butyrate. Taken together these results suggest that endogenous deacetylase enzymes become either down-regulated and/or the rate of histone acetylases increases markedly during macronuclear differentiation.  相似文献   

10.
Tetrahymena in the log phase of growth were pulse labeled with uridine-3H, fixed in acetic-alcohol, extracted with DNase, and embedded in Epon. 0.5-µ sections were cut, coated with Kodak NTB-2 emulsion, and developed after suitable exposures. Grains were counted above macronuclei, above 1000 micronuclei, and above 1000 micronucleus-sized "blanks" which were situated next to micronuclei in the visual field by means of a camera lucida. An analysis of grain counts showed that micronuclei were less than ½000 as active as macronuclei on the basis of grains per nucleus. Since micronuclei contained, on the average, about ½0 as much DNA as macronuclei, micronuclear DNA had less than 1% of the specific activity of macronuclear DNA in RNA synthesis. However, even this small amount of apparent incorporation was not significantly different from zero. Comparisons of the frequency distributions of labeled micronuclei with those of micronuclear "blanks" showed no evidence of a small population of labeled nuclei such as might be expected if micronuclei synthesized RNA for only a brief portion of the cell cycle. We conclude from these studies that there is no detectable RNA synthesis in Tetrahymena micronuclei during vegetative growth and reproduction.  相似文献   

11.
The macro- and micronucleus of Tetrahymena pyriformis are formed from a common diploid synkaryon during conjugation. Shortly after the 2nd postzygotic division, distinct morphologic and physiologic differences develop between the 2 nuclei. Micronuclei remain small, presumably diploid, and electronmicroscopic observations indicate that micronuclear DNA is contained in a dense, fibrous, chromosome-like coil. Macronuclei contain considerably more DNA than micronuclei, and the DNA of the macronucleus is found largely in the chromatin bodies typical of ciliate nuclei. The functional differences between macro- and micronuclei in vegetative cells also are striking. The template activity of DNA in the micronucleus is highly restricted compared to that in the macronucleus. Micronuclei synthesize and contain little RNA, and do not contain either nucleoli or ribonucleoprotein granules. Macronuclei, on the other hand, synthesize and contain large amounts of RNA and have many nucleoli and ribonucleoprotein granules. Macro- and micronuclei also have distinct differences in the timing of DNA synthesis during the cell cycle and in the timing and mechanism of nuclear division. Finally, during conjugation the macronucleus becomes pycnotic and disappears while the micronucleus undergoes meiosis and fertilization, ultimately giving rise to new macro- and new micronuclei. In short, the macro- and micronuclei of Tetrahymena provide an excellent system for studying the molecular mechanisms by which the same (or related) genetic information is maintained in different structural and functional states. Methods have been devised to isolate and purify macro- and micronuclei of Tetrahymena in the hope of correlating differences in the nucleoprotein composition of these nuclei with differences in their structure and function. The DNAs of macro- and micronuclei have been found to differ markedly in their content of a methylated base, N6-methyl adenine, and major differences in the histones of the 2 nuclei have been observed. Macronuclei contain histones similar to those found in vertebrate nuclei, while 2 major histone fractions seem to be missing in micronuclei. In addition, histone fraction F2A1 which is found in multiple, acetylated forms in macronuclei, is present only as a single, unacetylated form in micronuclei.  相似文献   

12.
Recognition of the role of non-Mendelian inheritance is on the rise, particularly as epigenetic phenomena are shown to shape the transformation of genomes into phenotypes. Ciliates provide a model system in which to explore the role of epigenetics because ciliates have both a germ line (micronuclear) and somatic (macronuclear) genome within every cell. In the ciliate Chilodonella uncinata, the macronucleus is extensively fragmented such that many genes end up on their own chromosomes. Hence, it is possible to track the fate of unlinked genes within macronuclei of C. uncinata. Here we demonstrate that the pattern of inheritance in isolates of C. uncinata is complex and involves both Mendelian transmission between micronuclei and macronuclei and epigenetic phenomena. The macronuclei from 2 isolates of C. uncinata and their progeny share identical rDNA loci and 2 identical beta-tubulin paralogs, yet have different actin paralogs and some beta-tubulin paralogs that are not shared. We propose a model in which all the divergent paralogs are present in the ciliate micronuclei. Under this model, different paralogs are retained in developing macronuclei following conjugation. We further speculate that an epigenetic mechanism, such as RNA interference, is involved in selective retention of specific paralogs within lines. This system allows the exploration of epigenetic phenomena that shape somatic genomes and provides parallels to studies of the development of somatic nuclei within animals.  相似文献   

13.
The DNA content of micronuclei, macronuclear anlagen, and of macronuclei of three age categories (young, mature and old) has been studied by cytophotometry of Feulgen stained isolated nuclei. The DNA content of the macronuclear anlagen decreases, at average, to one half of that of the micronuclei, from which they develop. Accumulations of fibro-granular material have been revealed electron microscopically at the periphery of such anlagen (in the thin perinuclear layer of cytoplasm); this material seems to have a nuclear origin. The DNA content of young macronuclei remains as low as that of the anlagen, but in mature ones it again increases approximately to the level of the micronuclei. The DNA content of old macronuclei is highly variable and ranges from equal to that of a micronucleus to exceeding this level about six times. These data indicate that a part of the genome of the micronuclei is lost at the beginning of their transformation into macronuclei, and that there is subsequent partial replication of some DNA fractions in maturing and ageing macronuclei.  相似文献   

14.
15.
Ciliates are unicellular eukaryotic organisms containing two types of nuclei: macronuclei and micronuclei. After the sexual pathway takes place, a new macronucleus is formed from a zygote nucleus, whereas the old macronucleus is degraded and resorbed. In the course of macronuclear differentiation, polytene chromosomes are synthesized that become degraded again after some hours. Most of the DNA is eliminated, and the remaining DNA is fragmented into small DNA molecules that are amplified to a high copy number in the new macronucleus. The protein Pdd1p (programmed DNA degradation protein 1) from Tetrahymena has been shown to be present in macronuclear anlagen in the DNA degradation stage and also in the old macronuclei, which are resorbed during the formation of the new macronucleus. In this study the identification and localization of a Pdd1p homologous protein in Stylonychia (Spdd1p) is described. Spdd1p is localized in the precursor nuclei in the DNA elimination stage and in the old macronuclei during their degradation, but also in macronuclei and micronuclei of starved cells. In all of these nuclei, apoptotic-like DNA breakdown was detected. These data suggest that Spdd1p is a general factor involved in programmed DNA degradation in Stylonychia.  相似文献   

16.
SYNOPSIS. In this study the characteristics of the synthesis of DNA and RNA in the nuclei of Loxodes were investigated. Loxodes striatus is a primitive ciliate with 2 pairs of structurally differentiated diploid nuclei, the macro- and micronuclei. The macronuclei are differentiated morphologically into a clearly recognizable central core and an outer zone. To determine DNA and RNA synthesis, individual organisms were analyzed by autoradiography after incubating groups of cells with a 3H-labeled precursor ([3H]thymidine for DNA and [3H]uridine for RNA). The following observations were made: (A) All portions of macro- and micronuclei appeared to contain DNA as judged by the localizations of incorporated [3H]thymidine. (B) The macro- and micronuclei did not synthesize DNA at the same time; moreover, the duration of DNA synthesis in the former was much longer than of the latter nucleus. (C) Replication of DNA in the inner core and outer zone of the macronucleus occurred at separate times with little if any overlap. (D) All of the detectable [3H]uridine incorporation was found in the macronucleus and none in the micronucleus. Within the macro-nucleus the central core was more heavily labeled. (E) The quantitative differences in the label of the different components of the nuclear complex were investigated. (F) Contrary to the previously reported information our results suggest that DNA synthesis can occur in adult macronuclei. The possible explanation of these results is discussed in the context of the nuclear evolution of ciliates and of recent information on nuclear differentiation.  相似文献   

17.
I B Raikov 《Tsitologiia》1975,17(9):1009-1017
The nuclear apparatus of Loxodes magnus Stokes (Holotricha) consists of numerous macronuclei which belong to the diploid type and never divide, and of numerous micronuclei. No nuclear groups exist; individual nuclei often lie in cytoplasmic islets surrounded by large lacunae of the smooth endoplasmic reticulum. Interphasic micronuclei have two-membraned envelopes with numerous pores, usually lined at the cytoplasmic side with a layer of vacuoles, channels, or flattened vesicles of the smooth endoplasmic reticulum. The chromatin of the micronuclei consists of anastomosing threads, 0.1--0.2 mum wide, between which several nucleolus-like bodies of microfibrillar structure occur. Adult macronuclei have a similar nuclear envelope and a similar system of vacuoles, channels, and flattened agranular cisternae outside it. The macronucleus contains a single large composite nucleolus with 3 or 4 fibrillar cores inside the common granular cortex. The fibrillar cores are pierced by channels containing nucleolar organizers in the form of strands of condensed chromatin. The peripheral zone of the macronucleus is filled with decondensed chromatin fibrils and contains a number of small chromocenters and several aggregates of RNP granules. No protein inclusions (spheres) have been observed in Loxodes macronuclei. The macronuclear anlagen, developing in the cycle of every cell division, show progressive decondensation of the chromosomes and formation of several nucleoli, each with its own organizer. Later on, the nucleoli fuse into a single nucleolus. The small chromocentres are the last to form.  相似文献   

18.
We obtained a monoclonal antibody (MA-1) specific for macronuclei of the ciliate Paramecium caudatum and P. dubosqui. Immunoblotting showed that the antigen was a polypeptide of 50 kilodalton (kDa). During the process of nuclear differentiation in P. caudatum, the MA-1 antigens appeared in the macronuclear anlagen immediately after four out of eight post zygotic nuclei differentiated morphologically into the macronuclear anlagen. Afterwards, the antigens could be detected in the macronucleus through the cell cycle, and disappeared when the macronucleus began to degenerate in exconjugant cells. These results suggest that the antigens may play a role in the differentiation and function of the macronucleus.  相似文献   

19.
Each cell of Paramecium caudatum has a germinal micronucleus. When a bi-micronucleate state was created artificially by micronuclear transplantation, both micronuclei divided for at least 2 cell cycles after nuclear transplantation. However, this bi-micronucleate state was unstable and reduced to a uni-micronucleate state after several fissions. Although the number of micronuclei was usually 1 during the vegetative phase, 4 presumptive micronuclei differentiated after conjugation. At the first post-conjugational fission, only 1 of the 4 micronuclei divided, indicating that there is tight regulation of micronuclear number in exconjugants. Micronuclei that did not divide at the first post-conjugational fission may persist through the first and second post-conjugational cell cycles. The decision to divide appears to be separate from the decision to degenerate, as evidenced by division of a remaining micronucleus upon removal of the dividing micronucleus at the first division. Degeneration of micronuclei in exconjugants differs from that of haploid nuclei after meiosis. Nutritional state affected micronuclear degeneration. Under well-fed conditions, the micronuclei destined to degenerate lost the ability to divide earlier than after starvation treatment, suggesting that micronuclear degeneration is an "apoptotic" phenomenon, probably under the control of the new macronuclei (macronuclear anlagen).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号