首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Wolbachia pipientis is a commonly occurring endosymbiont with well-characterised effects on host reproductive biology associated with its infection of the gonads. Wolbachia infections are also widespread in somatic tissues and consequently they have the potential to play a much broader role in host biology. Recently, Wolbachia was shown to alter the locomotion of Drosophila melanogaster in response to food cues in the laboratory. To determine whether this laboratory-based phenotype might translate to real differences for insects in the field, we performed a simple mark-release-recapture experiment with Wolbachia-infected D. melanogaster in a forested habitat. We demonstrate that infected flies are recaptured at twice the rate of uninfected flies, although infection does not affect the distance traveled by those flies recaptured. The differences in recapture could be explained by infection-induced changes in physiology or behavior. If generalizable, such changes may affect the interpretation of behavioral studies for Wolbachia-infected insects and have potential implications for the dynamics of Wolbachia infections in natural populations, including situations where Wolbachia-infected insects are being released for biological control.  相似文献   

2.
Wolbachia pipientis is an obligate intracellular endosymbiont of a range of arthropod species. The microbe is best known for its manipulations of host reproduction that include inducing cytoplasmic incompatibility, parthenogenesis, feminization, and male-killing. Like other vertically transmitted intracellular symbionts, Wolbachias replication rate must not outpace that of its host cells if it is to remain benign. The mosquito Aedes albopictus is naturally infected both singly and doubly with different strains of Wolbachia pipientis. During diapause in mosquito eggs, no host cell division is believed to occur. Further development is triggered only by subsequent exposure of the egg to water. This study uses diapause in Wolbachia-infected Aedes albopictus eggs to determine whether symbiont replication slows or stops when host cell division ceases or whether it continues at a low but constant rate. We have shown that Wolbachia densities in eggs are greatest during embryonation and then decline throughout diapause, suggesting that Wolbachia replication is dependent on host cell replication.  相似文献   

3.
Wolbachia are cytoplasmically inherited alpha-proteobacteria well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts they infect. Despite their obligate intracellular lifestyle which usually protects bacteria from phage infection, Wolbachia harbor a widespread temperate phage called WO. Evidences of horizontal phage transfers indicate that this phage could promote genetic exchanges between strains leading to evolutionary changes in the genomes of Wolbachia, and could be involved in the phenotypes these bacteria induced. In this study, we report the survey of Wolbachia and WO phage infections in 20 populations of the Uzifly Exorista sorbillans, a tachinid endoparasite of silkworm Bombyx mori, collected from different geographic regions of India. Previous studies demonstrated that Wolbachia is associated with positive reproductive fitness effects in this species. Polymerase chain reaction using the ftsZ gene encoding for a Wolbachia cell division protein and the orf7 capsid protein gene of the phage showed that all flies checked were infected by Wolbachia and its phage WO. Phylogenetic analyses based on the Wolbachia surface protein gene revealed 100% of double infections by the arthropod supergroups A and B. These results can serve as a valuable basis for understanding the evolution of Wolbachia bacteria and may provide information about the dynamics of Wolbachia–host associations. This knowledge could be exploited for the use of Wolbachia for effective control strategies of the Uzifly, a serious menace of the silkworm B. mori.  相似文献   

4.

Background  

Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA) variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta.  相似文献   

5.
Narita S  Nomura M  Kato Y  Yata O  Kageyama D 《Genetica》2007,131(3):241-253
The common yellow butterfly Eurema hecabe is widely distributed in East Asia, and is one of the most burdensome species for taxonomists due to the numerous geographic and seasonal wing colour patterns. Moreover, within this species, individuals with a yellow wing fringe that occur in temperate regions of Japan (Y type) proved to be biologically different from others that occur widely in subtropical regions of Japan and all over East Asia (B type). To unveil the genetic variation within and between the two types, a total of 50 butterflies collected at 18 geographic localities in East Asia were examined for nucleotide sequence variation of three mitochondrial regions: cytochrome c oxidase subunit I (COI), cytochrome c oxidase subunit III (COIII) and NADH dehydrogenase subunit 5 (ND5). In addition, they were also examined for infection status with the endosymbiotic bacteria Wolbachia. The three mitochondrial sequences consistently showed that (i) Y type and B type were highly divergent, (ii) nucleotide variation within B type was very small although sampled from a geographically wide range, and (iii) a weak association existed between mitochondrial DNA haplotypes and Wolbachia infection status.  相似文献   

6.
Wolbachia are maternally inherited symbiotic bacteria capable of inducing an extensive range of reproductive abnormalities in their hosts, including cytoplasmic incompatibility (CI). Its density (concentration) is likely to influence the penetrance of CI in incompatible crosses. The variations of Wolbachia density could also be linked with phage WO density. We determined the relative density (relative concentration) of prophage WO orf7 and Wolbachia (phage-to-bacteria ratio) during early developmental and adult stages of singly infected Aedes albopictus mosquito (Wolbachia A-infected) by using real-time quantitative PCR. Phage WO and Wolbachia did not develop at the same rate. Relative Wolbachia density (bacteria-to-host ratio) was high later in development (adult stages) whilst relative prophage WO density (phage-to-bacteria ratio) was low in the adult stages. Furthermore, 12-d-old adults of singly infected female mosquito had the highest Wolbachia density. In contrast, the larval stage 4 (L4) contained the highest prophage WO-B orf7 density. The association of hosts-Wolbachia-phage among diverse species is different. Thus, if phage and Wolbachia are involved in CI mechanism, the information of this association should be acquired for each specific type of organism for future use of population replacement or gene drive system.  相似文献   

7.
Li ZX  Lin HZ  Guo XP 《Current microbiology》2007,54(6):467-471
Wolbachia are obligate intracellular bacteria present in reproductive tissues of many arthropod species. It has been reported that few silverleafing populations of Bemisia tabaci were positive for Wolbachia, whereas non-silverleafing populations were more likely infected with Wolbachia and all that infect B. tabaci are Wolbachia belonging to supergroup B. However, current detection methods were shown to be not sensitive enough to uncover all infections. Herein, a protocol based on polymerase chain reaction–restriction fragment length polymorphism analysis of Wolbachia 16S ribosomal DNA is presented. A systematic survey for the prevalence of Wolbachia infection in natural populations of B. tabaci using this method revealed that (1) all populations of B. tabaci tested positive for Wolbachia and the overall infection rate reached 80.5% (293 positives in 364 tests); (2) both single infection and superinfection existed within individual whiteflies tested; and (3) silverleafing populations of B. tabaci most likely harbored A Wolbachia as single infection, whereas non-silverleafing populations tend to carry B Wolbachia as superinfection. It is clear that the Wolbachia infection pattern is closely related to the genetic races of B. tabaci, and the infection frequencies are apparently much higher than those described previously. This study shows that detection methods can significantly influence estimation of Wolbachia infection. It is supposed that Wolbachia may be acting as a biotic agent promoting rapid differentiation and speciation of B. tabaci. This is the most systematic survey of Wolbachia infection within B. tabaci.  相似文献   

8.
The cytoplasmically inherited bacterium Wolbachia is widespread in arthropod species and has been repeatedly detected in the predaceous mite Phytoseiulus persimilis. Our original goal was to assess the prevalence of Wolbachia infection in P. persimilis and the potential fitness consequences for this host. To accomplish that goal, seven P. persimilis strains were obtained from Europe, Africa and the USA and reared on the phytophagous mite Tetranychus urticae as prey. After preliminary results showed that the T. urticae used was infected with Wolbachia, the minimum starvation time of the predators to prevent false positive results from undigested prey was determined. We tested DNA samples by PCR (polymerase chain reaction) after starving the predators or feeding them Wolbachia-free T. urticae for various periods. Those experiments showed that Wolbachia could not be detected after 16 h at 25 °C and 48 h at 20 °C. To verify the results of the PCR analyses, we furthermore conducted crossing experiments with antibiotic-treated and untreated individuals. No indications of Wolbachia effects were recorded. Additionally, we screened live eggs of four of the seven strains reared in our laboratory and alcohol samples of 10 other P. persimilis strains for the occurrence of Wolbachia by PCR, none of which tested positive. Synthesis of our study and previous reports suggests that infection of P. persimilis with Wolbachia is extremely rare and of minor importance. We discuss the significance of our findings for future studies on the presence of Wolbachia in predaceous arthropods.  相似文献   

9.
Wolbachia pipientis is an endosymbiotic bacterium common to arthropods and filarial nematodes. This study presents the first survey and characterization of Wolbachia pipientis that infect spiders. All spiders were collected from Queensland, Australia during 2002–2003 and screened for Wolbachia infection using PCR approaches. The Wolbachia strains present in the spiders are diverse, paraphyletic, and for the most part closely related to strains that infect insects. We have also identified several spider Wolbachia strains that form a lineage outside the currently recognized six main Wolbachia supergroups (A–F). Incongruence between spider and Wolbachia phylogenies indicates a history of horizontal transmission of the bacterium in these host taxa. Like other arthropods, spiders are capable of harboring multiple Wolbachia strains.  相似文献   

10.
We report the first systematic survey for the presence of Wolbachia endosymbionts in aphids and whiteflies, particularly different populations and biotypes of Bemisia tabaci. Additional agriculturally important species included were predator species, leafhoppers, and lepidopterans. We used a polymerase chain reaction (PCR)-based detection assay with ribosomal 16S rDNA and Wolbachia cell surface protein (wsp) gene primers. Wolbachia were detected in a number of whitefly populations and species, whitefly predators, and one leafhopper species; however, none of the aphid species tested were found infected. Single, double, and triple infections were detected in some of the B. tabaci populations. PCR and phylogenetic analysis of wsp gene sequences indicated that all Wolbachia strains found belong to group B. Topologies of the optimal tree derived by maximum likelihood (ML) and a ML tree in which Wolbachia sequences from B. tabaci are constrained to be monophyletic are significantly different. Our results indicate that there have been at least four independent Wolbachia infection events in B. tabaci. The importance of the presence of Wolbachia infections in B. tabaci is discussed. RID= ID= <E5>Correspondence to: </E5>K. Bourtzis; <E5>email:</E5> kbourtz&commat;cc.uoi.gr Received: 9 September 2002 / Accepted: 25 September 2002  相似文献   

11.
Wolbachia are cytoplasmically inherited endosymbionts known to cause several reproductive alterations in insects which allow their spread in host populations. In the Uzifly Exorista sorbillans, endoparasites of silkworms, the prevalence of Wolbachia is high in the field. In the present study, we investigated Wolbachia’s effects on the Uzifly fitness traits by measuring fecundity and hatching rate in crosses involving infected and cured individuals. We found evidence for positive fitness effects associated with Wolbachia infection in females which could help promote the spread of Wolbachia in E. sorbillans populations. We tested two types of treatments for removing Wolbachia, antibiotic therapy and high temperature treatment and found an influence on the reproduction: females treated by antibiotics have a lower fecundity than females cured by high temperature which could indicate a negative effect of the antibiotherapy on females’ fitness. Furthermore, the monitoring of the Uzifly populations during 2 years revealed seasonal variations of the offspring production which may be linked to temperature.  相似文献   

12.
Parthenogenesis-inducing (PI) Wolbachia bacteria are reproductive parasites that cause infected (W +) female haplodiploid parasitoids to produce daughters without fertilization by males. Theoretically, PI Wolbachia infection should spread to fixation within Trichogramma populations as males are no longer required to produce female offspring. Infections in some naturally occurring Trichogramma populations are, however, maintained at frequencies ranging from 4 to 26%. Here we describe discrete equation models to examine if the PI Wolbachia infection in Trichogramma populations can be maintained at relatively low frequencies by mating regularity. Model outcomes suggest the probability of W + females mating could stabilize Wolbachia infection frequency at low levels in Trichogramma populations. The primary mechanism maintaining low-level PI Wolbachia infection in Trichogramma populations is reducing the survivorship from egg to adult in infected relative to uninfected females. The model successfully demonstrates that the relatively low PI Wolbachia infection frequency in host populations can be maintained by fertilization, or male rescue, of infected eggs, which avoids potentially hazardous gamete duplication that occurs during Wolbachia-induced parthenogenesis.  相似文献   

13.
14.
Cytoplasmic incompatibility (CI) is a reproductive phenotype induced by bacterial endosymbionts in arthropods. Measured as a reduction in egg hatchability resulting from the crossing of uninfected females with bacteria-infected males, CI increases the frequency of bacteria-infected hosts by restricting the fertilization opportunities of uninfected hosts in populations. Wolbachia, a type of alpha-proteobacteria, is well known as a CI inducer in a wide range of arthropod species, while Cardinium, a member of the phylum Bacteroidetes, is known to cause CI in one wasp and three spider mite species. In this study, dual infection with Cardinium and Wolbachia induced strong CI in a single host, Sogatella furcifera (Horváth), a planthopper species that is naturally infected with both bacteria. Specifically, infection with Cardinium alone was found to cause a 76 % reduction in egg development, and dual infection with Cardinium and Wolbachia a 96 % reduction, indicating that Cardinium induces CI and the dual infection raises the CI level. This study was the first to document reproductive alteration by Cardinium in a diploid host species.  相似文献   

15.
Endosymbiotic bacteria that potentially influence reproduction and other fitness-related traits of their hosts are widespread in insects and mites and their appeal to researchers’ interest is still increasing. We screened 20 strains of 12 agriculturally relevant herbivorous and predatory mite species for infection with Wolbachia, Cardinium and Spiroplasma by the use of PCR. The majority of specimens originated from Austria and were field collected or mass-reared. Eight out of 20 strains (40%) tested, representing seven of 12 mite species (58%), carried at least one of the three bacteria. We found Wolbachia in the herbivorous spider mites Tetranychus urticae and Bryobia rubrioculus, with the former also carrying Spiroplasma and the latter also carrying Cardinium. Cardinium was furthermore found in two populations of the predatory mite Euseius finlandicus and the spider mite Eotetranychus uncatus. Spiroplasma was detected in the predatory mite Neoseiulus californicus. All bacteria positive PCR products were sequenced, submitted to GenBank and analyzed in BLAST queries. We found high similarities to complete identity with bacteria found in the same and different mite species but also with bacteria found in insect species like ladybirds, butterflies and minute pirate bugs, Orius. We discuss the significance of potential (multiple) infections with the investigated bacteria for biological control.  相似文献   

16.
RBP1 is an important splicing factor involved in alternative splicing of the pre-mRNA of Drosophila sex-determining gene dsx. In this work, the Bombyx mori homologue of the rbp1 gene, Bmrbp1, was cloned. The pre-mRNA of Bmrbp1 gene is alternatively spliced to produce four mature mRNAs, named Bmrbp1-PA, Bmrbp1-PB, Bmrbp1-PC and Bmrbp1-PD, with nucleotide lengths of 799 nt, 1,316 nt, 894 nt and 724 nt, coding for 142 aa, 159 aa, 91 aa and 117 aa, respectively. BmRBP1-PA and BmRBP1-PD contain a N terminal RNA recognization motif (RRM) and a C terminal arginine/serine-rich domain, while BmRBP1-PB and BmRBP1-PC only share a RRM. Amino acid sequence alignments showed that BmRBP1 is conserved with its homologues in other insects and with other SR family proteins. The RT-PCR showed that Bmrbp1-PA was strongly expressed in all examined tissues and development stages, but Bmrbp1-PB was weakly expressed in these tissues and stages. The expression of both Bmrbp1-PA and Bmrbp1-PB showed no obvious sex difference. While the Bmrbp1-PC and Bmrbp1-PD were beyond detection by RT-PCR very likely due to their tissue/stage specificity. These results suggested that Bmrbp1 should be a member of SR family splicing factors, whether it is involved in the sex-specific splicing of Bmdsx pre-mRNA needs further research.  相似文献   

17.
The Wolbachia endosymbiont of spiders has not been extensively examined. In order to investigate the distribution, evolutionary history, and reproductive phenotype of Wolbachia in spiders in China, we tested 11 geographic populations of Hylyphantes graminicola. Wolbachia infection has been detected in each population. 10 Wolbachia strains have been characterized by multilocus sequence typing (MLST). Phylogenetic analyses indicated that eight Wolbachia strains in H. graminicola belonged to supergroup B, and two belonged to supergroup A. No correlation existed between Wolbachia diversity and host’s geographic distance. The significant correlation was observed between pairwise distance of H. graminicola COI and genetic divergence of associated Wolbachia strains. We also found that Wolbachia infection frequencies in hosts varied over geographic space.  相似文献   

18.
Li G  Tang Q  Chen H  Yao Q  Ning D  Chen K 《Current microbiology》2011,62(5):1368-1373
To investigate whether Bombyx mori immunized with Bacillus subtilis spore displaying GP64 escape from the B. mori nucleopolyhedrovirus (BmNPV) attack, a recombinant integrative plasmid named pJS700-GP64 was constructed, which carries a recombinant cotC-Gp64 gene under the control of the cotC promoter. In this study, pJS700-GP64 was transformed into B. subtilis 168 (trp) competent cells, an amylase (amyE) inactivated mutant was selected, and was confirmed to be a double cross-over integrant, cotC-Gp64 fragment of which was integrated into B. subtilis chromosome. Gp64 was expressed on the spore surface and recognized by Gp64-specific antibody. Results of B. mori when challenged with BmNPV indicated that B. mori vaccinated with the recombinant spores possessed resistance to the invasion of BmNPV at some degree.  相似文献   

19.
To construct the Bac-to-Bac expression system of Bombyx mori nucleopolyhedrovirus (BmNPV), a transfer vector was constructed which contained an Escherichia coli (E. coli) mini-F replicon and a lacZ: attTN7: lacZ cassette within the upstream and downstream regions of the BmNPV polyhedrin gene. B. mori larvae were cotransfected with wild-type BmNPV genomic DNA and the transfer vector through subcutaneous injection to generate recombinant viruses by homologous recombination in vivo. The genomic DNA of budded viruses extracted from the hemolymph of the transfected larvae was used to transform E. coli DH10B. Recombinant bacmids were screened by kanamycin resistance, PCR and restriction enzyme (REN) digestion. One of the bacmid colonies, BmBacJS13, which had similar REN profiles to that of wild-type BmNPV, was selected for further research. To investigate the infectivity of BmBacJS13, the polyhedrin gene was introduced into the bacmid and the resultant recombinant (BmBacJS13-ph) was transfected to BmN cells. The budded viruses were collected from the supernatant of the transfected cells and used for infecting BmN cells. Growth curve analysis indicated that BmBacJS13-ph had a similar growth curve to that of wild-type BmNPV. Bio-assays indicated that BmBacJS13-ph was also infectious to B. mori larvae. Foundation items: 973 (2003CB114202); Programme Strategic Scientific Alliances between China and the Netherlands (2004CB720404); National Natural Fundation of China project (30630002)  相似文献   

20.
Intracellular bacteria of the genus Wolbachia (alpha Proteobacteria) induce cytoplasmic incompatibility (CI) in many arthropod species, including spider mites, but not all Wolbachia cause CI. In spider mites CI becomes apparent by a reduced egg hatchability and a lower daughter:son ratio: CI in haplodiploid organisms in general was expected to produce all-male offspring or a male-biased sex ratio without any death of eggs. In a previous study of Japanese populations of Tetranychus urticae, two out of three green-form populations tested were infected with non-CI Wolbachia strains, whereas none of six red-form populations harbored Wolbachia. As the survey of Wolbachia infection in T. urticae is still fragmentary in Japan, we checked Wolbachia infection in thirty green-form populations and 29 red-form populations collected from a wide range of Japanese islands. For Wolbachia-infected populations, we tested the effects of Wolbachia on the reproductive traits and determined the phylogenetic relationships of the different strains of Wolbachia. All but one green-form populations were infected with Wolbachia and all strains belonged to the subgroup Ori when the wsp gene was used to determine the phylogenetic relationships of different strains of Wolbachia. Six out of 29 red-form populations harbored Wolbachia and the infected strains belonged to the subgroups Ori and Bugs. Twenty-four of 29 infected green-form populations and five of six infected red-form populations induced CI among the hosts. Thus, CI-Wolbachia strains are widespread in Japan, and no geographical trend was observed in the CI-Wolbachia. Although three red-form populations harbored other intracellular bacteria Cardinium, they did not affect host reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号