首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the product-centered focus of life-cycle assessment has been one of its strengths, this analytical perspective embeds assumptions that may conflict with the realities of environmental problems. This article demonstrates, through a series of mathematical derivations, that all the products in use, rather than a single product, frequently should be the appropriate unit of analysis. Such a "fleet-centered" approach supplies a richer perspective on the comparative emissions burdens generated by alternative products, and it eliminates certain simplifying assumptions imposed upon the analysis by a product-centered approach.
A sample numerical case, examining the comparative emissions of steel-intensive and aluminum-intensive automobiles, is presented to contrast the results of the two approaches. The fleet-centered analysis shows that the "crossover time" (i.e., the time required before the fuel economy benefits of the lighter aluminum vehicle offset the energy intensity of the processes used to manufacture the aluminum in the first place) can be dramatically longer than that predicted by a product-centered life-cycle assessment.
The fleet-centered perspective explicitly introduces the notion of time as a critical element of comparative life-cycle assessments and raises important questions about the role of the analyst in selecting the appropriate time horizon for analysis. Moreover, with the introduction of time as an appropriate dimension to life-cycle assessment, the influences of effects distributed over time can be more naturally and consistently treated.  相似文献   

2.
Three established life-cycle inventories of agricultural operations were used to generate air emissions data for soybean production: the greenhouse gases, regulated emissions, and energy use in transportation (GREET) model; the economic input-output life-cycle assessment (EIO-LCA) model; and SimaPro software equipped with the Franklin database. EIO-LCA and GREET baseline data were compared to evaluate differences in boundary definitions that apply specifically to U.S. soybean agriculture and processing, which resulted in several major findings. The EIO model estimated for emissions of particulate matter less than 10 micrograms (PM10) resulting from wind erosion that were not included in GREET, but neglected indirect nitrous oxide (N2O) and nitrogen oxides (NOx) emissions from fertilizer application. EIO also assumed significantly lower process energy requirements and lower volatile organic compounds (VOC) for soybean crushing and oil extraction. The GREET and SimaPro models were compared using identical boundary and assumption data, to reveal major discrepancies in fundamental assumptions of energy inventories. Key emission factors varied by several orders of magnitude for basic energy generation and combustion processes, potentially impacting results for any inventory analysis that contains significant energy consumption. The Franklin database assumed VOC and sulfur oxides (SOx) emissions more than an order of magnitude higher than GREET for all categories investigated, with significantly lower N2O and methane (CH4) emission factors.  相似文献   

3.
Several tools exist for the analysis of the environmental impacts of chains or networks of processes. These relatively simple tools include materials flow accounting (MFA), substance flow analysis (SFA), life-cycle assessment (LCA), energy analysis, and environmentally extended input-output analysis (IOA), all based on fixed input-output relations. They are characterized by the nature of their flow objects, such as products, materials, energy, substances, or money flows, and by their spatial and temporal characteristics. These characteristics are insufficient for their methodological characterization, and sometimes lead to inappropriate use. More clarity is desirable, both for clearer guidance of applications and for a more consistent methodology development. In addition to the nature of the flow object and to spatial and temporal characteristics, another key feature concerns the way in which processes are included in a system to be analyzed.
The inclusion of processes can be done in two fundamentally different ways: according to a full mode of analysis, with the inclusion of all flows and related processes to their full extent as present in a region in a specific period of time; and according to an attribution mode, taking processes into account insofar as these are required for a given social demand, function, or activity, in principle whenever and wherever these processes take place. This distinction, which cuts across families of tools that traditionally belong together, appears to have significant methodological and practical implications. Thus the distinction between the two modes of analysis, however crucial it may be, strengthens the idea of one coherent family of tools for environmental systems analysis.  相似文献   

4.
A new scheme of hybrid life-cycle assessment (LCA) termed the waste input-output (WIO) model is presented that ex-plicitly takes into account the interdependence between the flow of goods and waste. The WIO model has two distin-guishing features. First, it expands the Leontief environmental input-output (EIO) model with respect to waste flows. It turns out that the EIO model is a special case of the WIO model in which there is a strict one-to-one correspondence between waste types and treatment methods. By relaxing this condition, the WIO model provides a general framework for LCA of waste management. Second, the WIO model takes into account the "dynamics of waste treatment", which refers to the fact that the input-output relationships of waste treatment are significantly affected by the level and composition of waste feedstock, by incorporating an engineering process model of waste treatment. Because waste treatment is expected to accept whatever waste is generated by industry and households, a proper consideration of this feature is vital for LCA of waste management. We estimated a WIO table for Japan and applied it to evaluating effects of alternative waste management poli-cies with regard to regional concentration of incineration and the sorting of waste with regard to flammability. We found that concentrating treatment in a small number of large incin-erators combined with an increased degree of sorting could decrease both landfill consumption and the emission of carbon dioxide.  相似文献   

5.
This paper proposes a computer-based method for providing product designers with real-time environmental impact assessment. In this concurrent modeling approach, environmental experts build life-cycle models, define their interfaces, and publish them as distributed objects on the Internet. Traditional designers integrating these objects into their design models have access to the impact assessment methods provided by the environmental expert. In this paradigm, the focus shifts from providing techniques that let non-expert designers perform life-cycle impact assessments to tools that facilitate timely communication and information transfer between designers and appropriate environmental experts. Establishing real-time communication between the product design models and the environmental life-cycle models is the primary focus of this paper. Methods for establishing and maintaining the interaction between life-cycle and product design models are described. A beverage container design example illustrates how this collaborative approach can use environmental and traditional design goals to determine effective tradeoffs between design alternatives.  相似文献   

6.
This article presents a generic method to assist product and process designers in measuring resource use and environmental discharges based on the relationships between process flow inputs and outputs and their activity levels. It combines activity-based costing from conventional accounting with life-cycle inventories. The method is demonstrated on four electronic assembly product and process designs. The demonstration exhibits the disaggregation and allocation of costs and effluents from various manufacturing operations. This activity-based environmental allocation approach may be integrated with inventory analysis-the first step in full and streamlined life-cycle assessments, design for environment evaluation methods, environmental management activities, and new production planning models that consider environmental impacts.  相似文献   

7.
Product Environmental Life-Cycle Assessment Using Input-Output Techniques   总被引:1,自引:0,他引:1  
Life-cycle assessment (LCA) facilitates a systems view in environmental evaluation of products, materials, and processes. Life-cycle assessment attempts to quantify environmental burdens over the entire life-cycle of a product from raw material extraction, manufacturing, and use to ultimate disposal. However, current methods for LCA suffer from problems of subjective boundary definition, inflexibility, high cost, data confidentiality, and aggregation.
This paper proposes alternative models to conduct quick, cost effective, and yet comprehensive life-cycle assessments. The core of the analytical model consists of the 498 sector economic input-output tables for the U.S. economy augmented with various sector-level environmental impact vectors. The environmental impacts covered include global warming, acidification, energy use, non-renewable ores consumption, eutrophication, conventional pollutant emissions and toxic releases to the environment. Alternative models are proposed for environmental assessment of individual products, processes, and life-cycle stages by selective disaggregation of aggregate input-output data or by creation of hypothetical new commodity sectors. To demonstrate the method, a case study comparing the life-cycle environmental performance of steel and plastic automobile fuel tank systems is presented.  相似文献   

8.
This study compared six widely used European life-cycle assessment (LCA) inventory data sets, identified those, data elements that introduce major differences, and quantitatively determined the influence of these data elements for a cradle-to-gate LCA o f polyvinyl chloride (PVC).Large differences in data (10- I 100%) were found. Data on substances with recognized high environmental impact and easily determined emissions and environmental impacts, like those related to energy, show the least differences. Process-specific emissions show larger differences. Substantially more substances emitted t o air than t o water or soil are reported, and differences between the values are less. Furthermore, various inventory data sets donot always cover the same substances. Often, individual substances, such as specific (chlorinated) hydrocarbons and metals, are collectively categorized rather than individually reported. Specific data elements o f the inventory causing many differences were geographical, temporal, and technological representativeness; categorization o f substances; naming of substance categories; use of different category definitions: system boundaries; and allocation method. The influence of these differences on LCA results, determined through sensitivity analysis, was significant, typically 10- 100%. Results emphasize the importance of appropriate and explicitly described data sets and the necessity o f sensitivity analyses. Results also show the need for a regularly updated and openly available database with high quality data. The availability of such a database would improve the reliability of LCA and thereby stimulate its application.  相似文献   

9.
Eco-efficiency at the product level is defined as product value per unit of environmental impact. In this paper we present a method for quantifying the eco-efficiency using quality function deployment (QFD) and life-cycle impact assessment (LCIA). These well-known tools are widely used in the manufacturing industry.
QFD, which is one of the methods used in product development based on consumer preferences, is introduced to calculate the product value. An index of the product value is calculated as the weighted average of improvement rates of quality characteristics. The importance of customer requirements, derived from the QFD matrix, is applied.
Environmental impacts throughout a product life cycle are calculated based on an LCIA method widely used in Japan. By applying the LCIA method of endpoint type, the endpoint damage caused by various life-cycle inventories is calculated. Willingness to pay is applied to integrate it into a single index.
Eco-design support tools, namely, the life-cycle planning (LCP) tool and the life-cycle assessment (LCA) tool, have already been developed. Using these tools, data required for calculation of the eco-efficiency of products can be collected. The product value is calculated based on QFD data stored in the LCP tool and the environmental impact is calculated using the LCA tool.
Case studies of eco-efficiency are adopted and the adequacy of this method is clarified. Several advantages of this method are characterized.  相似文献   

10.
A simple method of representing the eco-efficiency (E/E) of a product system has been developed and applied to a pollution prevention program at a small to medium-sized enterprise (SME). Cost-side and environment-side indicators were derived using total cost accounting and life-cycle assessment, respectively. The derived indicators were subsequently normalized to reference values representing the current cost and environmental situation. By combining these normalized indicators, the E/E of a product system can be expressed on a simple graph. The method was applied in a case study carried out at a South Korean SME producing components for electronic equipment such as mobile communication base stations. A silver-plating process was identified as one of the key processes driving a substantial fraction of the total cost and aggregate environmental impact of the product system. Focusing on the key issues identified, a series of alternative processes, including use of a product insulation cover, a sieve-type ancillary electrode, a balanced-uniform plating technique, stream segregation, and noncyanide electroplating, were proposed. The feasibility of these alternatives was validated against product specifications as well as the company's financial and spatial capacity. The potential improvements accruing from these alternatives are presented as a simple graph that can be used by decision makers to readily identify trade-offs between economic and environmental issues.  相似文献   

11.
The presence of value judgments in life-cycle impact assessment (LCIA) has been a constant source of controversy. According to a common interpretation, the international standard on LCIA requires that the assessment methods used in published comparisons be "value free." Epistemologists argue that even natural science rests on "constitutive" and "contextual" value judgments. The example of the equivalency potential for climate change, the global warming potential (GWP), demonstrates that any impact assessment method inevitably contains not only constitutive and contextual values, but also preference values. Hence, neither life-cycle assessment (LCA) as a whole nor any of its steps can be "value free." As a result, we suggest a more comprehensive definition of objectivity in LCA that allows arguments about values and their relationship to facts. We distinguish three types of truth claims: factual claims, which are based on natural science; normative claims, which refer to preference values; and relational claims, which address the proper relation between factual knowledge and values. Every assessment method, even the GWP, requires each type of claim. Rational arguments can be made about each type of claim. Factual truth claims can be assessed using the scientific method. Normative claims can be based on ethical arguments. The values of individuals or groups can be elicited using various social science methods. Relational claims must follow the rules of logic. Relational claims are most important for the development of impact assessment methods. Because LCAs are conducted to satisfy the need of decision makers to consider environmental impacts, relational claims about impact assessment methods should refer to this goal. This article introduces conditions that affect environmental decision making and discusses how LCA—values and all—can be defended as a rational response to the challenge of moving uncertain scientific information into the policy arena.  相似文献   

12.
Recent years have seen increasing interest in life cycle greenhouse gas emissions accounting, also known as carbon footprinting, due to drivers such as transportation fuels policy and climate‐related eco‐labels, sometimes called carbon labels. However, it remains unclear whether applications of greenhouse gas accounting, such as carbon labels, are supportable given the level of precision that is possible with current methodology and data. The goal of this work is to further the understanding of quantitative uncertainty assessment in carbon footprinting through a case study of a rackmount electronic server. Production phase uncertainty was found to be moderate (±15%), though with a high likelihood of being significantly underestimated given the limitations in available data for assessing uncertainty associated with temporal variability and technological specificity. Individual components or subassemblies showed varying levels of uncertainty due to differences in parameter uncertainty (i.e., agreement between data sets) and variability between production or use regions. The use phase displayed a considerably higher uncertainty (±50%) than production due to uncertainty in the useful lifetime of the server, variability in electricity mixes in different market regions, and use profile uncertainty. Overall model uncertainty was found to be ±35% for the whole life cycle, a substantial amount given that the method is already being used to set policy and make comparative environmental product declarations. Future work should continue to combine the increasing volume of available data to ensure consistency and maximize the credibility of the methods of life cycle assessment (LCA) and carbon footprinting. However, for some energy‐using products it may make more sense to increase focus on energy efficiency and use phase emissions reductions rather than attempting to quantify and reduce the uncertainty of the relatively small production phase.  相似文献   

13.
A Decision Support Framework for Sustainable Waste Management   总被引:1,自引:0,他引:1  
This article describes a decision support framework for the evaluation of scenarios for the integrated management of municipal solid waste within a local government area (LGA).
The work is initially focused on local government (i.e., municipal councils) in the state of Queensland, Australia; however, it is broadly applicable to LGAs anywhere. The goal is to achieve sustainable waste management practices by balancing global and regional environmental impacts, social impacts at the local community level, and economic impacts. The framework integrates life-cycle assessment (LCA) with other environmental, social, and economic tools. For this study, social and economic impacts are assumed to be similar across developed countries of the world. LCA was streamlined at both the life-cycle inventory and life-cycle impact assessment stages.
For this process, spatial resolution is introduced into the LCA process to account for impacts occurring at the local and regional levels. This has been done by considering social impacts on the local community and by use of a regional procedure for LCA data for emissions to the environment that may have impacts at the regional level.
The integration follows the structured approach of the pressure-state-response (PSR) model suggested by the Organisation for Economic Cooperation and Development (OECD). This PSR model has been extended to encompass nonenvironmental issues and to guide the process of applying multiple tools.
The framework primarily focuses on decision analysis and interpretation processes. Multiattribute utility theory (MAUT) is used to assist with the integration of qualitative and quantitative information. MAUT provides a well-structured approach to information assessment and facilitates objective, transparent decisions. A commercially available decision analysis software package based on MAUT has been used as the platform for the framework developed in this study.  相似文献   

14.
The widespread popularity of life-cycle assessment (LCA) is difficult to understand from the point of view of instrumental decision making by economic agents. Ehrenfeld has argued, in a 1997 issue of this journal, that it is the world-shaping potential of LCA that is more important than its use as a decision-making tool. The present study attempts to explore the institutionalization of this "LCA world view" among ordinary market actors. This is important because environmental policy relies increasingly on market-based initiatives. Cognitive and normative assumptions in authoritative LCA documents are examined as empirical data and compared with data from focus group interviews concerning products and the environment with "ordinary" manufacturers, retailers, and consumers in Finland. These assumptions are (1) the "cradle-to-grave" approach, (2) the view that all products have an environmental impact and can be improved, (3) the relativity of environmental merit, and (4) the way responsibility for environmental burdens is attributed. Relevant affinities, but also differences, are identified. It is argued that life-cycle thinking is not primarily instrumental, but rather is gaining a degree of intrinsic value. The study attempts to establish a broader institutional context in which the popularity of LCA can be understood. From the point of view of this broader context, some future challenges for the development of LCA and life-cycle thinking are suggested.  相似文献   

15.
Towards an Integrated Regional Materials Flow Accounting Model   总被引:1,自引:0,他引:1  
A key challenge in attaining regional sustainability is to reduce both the direct and the indirect environmental impacts associated with economic and household activity in the region. Knowing what these flows are and how they change over time is a prerequisite for this task.
This article describes the early development of an integrated regional materials flow accounting framework. The framework is based on a hybrid (material and economic) multiregional input-output model. Using readily available economic and materials data sets together with transport and logistics data, the framework attempts to provide estimates of household resource flows for any U.K. region at quite detailed levels of product and material disaggregation. It is also capable of disaggregating these flows according to specific socioeconomic criteria such as income level or occupation of the head of household. Allied to appropriate energy and life-cycle assessment data sets, the model could, in addition, be used to map both direct and indirect environmental impacts associated with these flows.
The benefits of such an approach are likely to be a considerable reduction of uncertainties in (1) our knowledge of the household metabolism, and hence our predictions of regional household waste generation; (2) our assessment of the impacts of contemplated changes in industrial process siting, and thereby on other aspects of local and regional planning; and (3) our understanding of the impacts of changes in the pattern of demand for different materials and products. It is concluded that the use of such an integrated assessment tool has much to contribute to the debate on regional sustainability.  相似文献   

16.
Land use is an increasingly important component of sustainability evaluations, and numerous performance metrics have evolved to meet this need. The selection of appropriate land-use metrics for decision makers, however, remains an ongoing challenge. Additionally, life-cycle practitioners often struggle to provide meaningful impact assessment because of challenges associated with traditional land-use impact metrics. This article is intended to assist decision makers and life-cycle practitioners who wish to more effectively measure and evaluate one aspect of land use: surface area occupation. Existing performance metrics are discussed, and the specific circumstances under which each is appropriate are identified. Building on leading-edge research and analysis in the field of life-cycle impact assessment, a modified methodology for evaluating surface area occupation is proposed. This approach is demonstrated for a series of mining practices including three individual gold mines, a bauxite mine, and a copper mine. The specific data requirements and resulting equivalency factors for each mine are discussed. Results indicate that equivalency factors for gold (average of 700 acre-yr/ton) are expected to be several orders of magnitude higher than for either bauxite (0.004 acre-yr/ ton) or copper (0.03 acre-yr/ton). These dramatic differences in results demonstrate that equivalency factors are appropriate and necessary for including land-use impact potential as part of a life-cycle assessment that includes several different minerals or material requirements.  相似文献   

17.
A sustainability matrix has been developed at Shell Global Solutions to show the environmental, social, and economic impacts of a product. The approach aims to be quicker and more cost-effective than a conventional life-cycle assessment by focusing on specific areas of concern through the product life cycle and then comparing products by scaling their impacts relative to one another. It provides a way of making qualitative and quantitative assessment that gives a depth to the assessment beyond data analysis. The tool includes subjective judgment, which tends to reflect current thinking in the company. Once the tool has been fully tested on all product types, the indicators that are central to the process will be assessed by external stakeholders. This article describes the development of the sustainability assessment tool and presents an example that compares the sustainability of a biolubricant (an "environ-mentally acceptable" hydraulic fluid meeting Swedish Standard SS 15 54 34) with that of a conventional mineral-oil-based product. The tool provides a quick decision-making instrument to help Shell decide which products should be marketed for the business to continue on a sustainable path. The tool also provides a more detailed level of information if a more thorough assessment is necessary.  相似文献   

18.
Sustainable management of materials and products requires continuous evaluation of numerous complex social, ecological, and economic factors. A number of tools and methods are emerging to support this. One of the most rigorous is life-cycle assessment (LCA). But LCAs often lack a sustainability perspective and bring about difficult trade-offs between specificity and depth, on the one hand, and comprehension and applicability, on the other. This article applies a framework for strategic sustainable development (often referred to as The Natural Step (TNS) framework) based on backcasting from basic principles for sustainability. The aim is to foster a new general approach to the management of materials and products, here termed "strategic life-cycle management". This includes informing the overall analysis with aspects that are relevant to a basic perspective on (1) sustainability, and (2) strategy to arrive at sustainability. The resulting overview is expected to help avoid costly assessments of flows and practices that are not critical from a sustainability and/or strategic perspective and to help identify strategic gaps in knowledge or potential problems that need further assessment. Early experience indicates that the approach can complement some existing tools and concepts by informing them from a sustainability perspective-for example, current product development and LCA tools.  相似文献   

19.
Numerous methodologies for the life-cycle impact assessment (LCIA) step of life-cycle assessment (LCA) are currently in popular use. These methods, which are based on a single method or level of analysis, are limited to the environmental fates, impact categories, damage functions, and stressors included in the method or model. Because of this, it has been suggested within the LCA community that LCIA data from multiple methods and/or levels of analysis, that is, end-point and midpoint indicators, be used in LCA-based decision analysis to facilitate better or, at least more informed, decision making. In this (two-part) series of articles, we develop and present a series of LCA-based decision analysis models, based on multiattribute value theory (MAVT), which utilize data from multiple LCIA methods and/or levels of analysis. The key to accomplishing this is the recognition of what LCIA damage indicators represent with respect to decision analysis, namely, decision attributes and, in most cases, proxy attributes. The use of proxy attributes in a decision model, however, poses certain challenges, such as the assessment of decision-maker preferences for actual consequences that are only known imprecisely because of inherent limits of both LCA and scientific knowledge. In this article (part I), we provide a brief overview of MAVT and examine some of the decision-theoretic issues and implications of current LCIA methods. We illustrate the application of MAVT to develop a decision model utilizing damage indicators from a single LCIA methodology; and, we identify the decision-theoretic issues that arise when attempting to combine LCIA indicators from multiple methods and/or levels of analysis in a single decision model. Finally, we introduce the use in our methodology of constructed attributes to combine related end-point damage indicators into single decision attributes and the concept and evaluation of proxy attributes.  相似文献   

20.
Product design-for-environment (DfE) has traditionally relied on life-cycle assessment (LCA) as a primary means of assessing environmental performance. To date, LCA has focused on static inventory and impacts of material streams during the stages of resource extraction, component manufacture, product use, and end of life at a high level of aggregation. Improvement analysis, though theoretically an important stage of LCA, is practically very challenging to implement using LCA alone. One reason for this is that the focus on detailed characterization of material streams does not facilitate a development of an understanding of the mechanistic relationship between design intent and material, manufacturing, and use-phase potential impacts. As the product development community transitions from sequential design to more streamlined concurrent design, interactive design tools are needed as a supplement to assessment tools in order to facilitate tradeoffs among environmental and other factors. This article presents an environmental analysis approach based on detailed process modeling which evaluates components from a functional design point of view. From a manufacturer's perspective, local potential effects in aggregate are often as important as global potential impacts. Furthermore, impacts often relate to explicit trade-offs between different life-cycle stages, such as production and use. In this article, the influence of functional design and manufacturing specifications (surface tolerance and finish) on localized potential impacts is illustrated through two different mechanical component (steel roller bearing and rotating shaft) case studies. Detailed analytical tools are key in enabling optimization and trade-offs by designers and process planners. The functional modeling approach is an important complement to LCA in providing a well-defined view of environmental performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号