首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the molecular identification of the capsaicin receptor, now known as TRPV1, transient receptor potential (TRP) channels have occupied an important place in the understanding of sensory nerve function in the context of pain. Several TRP channels exhibit sensitivity to substances previously known to cause pain or pain-like sensations; these include cinnamaldehyde, menthol, gingerol, and icillin. Many TRP channels also exhibit significant sensitivity to increases or decreases in temperature. Some TRP channels are sensitized in vitro by the activation of other receptors such that these channels may be activated by processes, such as inflammation that result in pain. TRP channels are suggested to be involved in processes as diverse as sensory neuron activation events, neurotransmitter release and action in the spinal cord, and release of inflammatory mediators. These functions strongly suggest that specific and selective inhibition of TRP channel activity will be of use in alleviating pain.  相似文献   

2.
TRP channels in mechanosensation: direct or indirect activation?   总被引:6,自引:0,他引:6  
Ion channels of the transient receptor potential (TRP) superfamily are involved in a wide variety of neural signalling processes, most prominently in sensory receptor cells. They are essential for mechanosensation in systems ranging from fruitfly hearing, to nematode touch, to mouse mechanical pain. However, it is unclear in many instances whether a TRP channel directly transduces the mechanical stimulus or is part of a downstream signalling pathway. Here, we propose criteria for establishing direct mechanical activation of ion channels and review these criteria in a number of mechanosensory systems in which TRP channels are involved.  相似文献   

3.
TRPs in our senses   总被引:1,自引:0,他引:1  
In the last decade, studies of transient receptor potential (TRP) channels, a superfamily of cation-conducting membrane proteins, have significantly extended our knowledge about the molecular basis of sensory perception in animals. Due to their distinct activation mechanisms and biophysical properties, TRP channels are highly suited to function in receptor cells, either as receptors for environmental or endogenous stimuli or as molecular players in signal transduction cascades downstream of metabotropic receptors. As such, TRP channels play a crucial role in many mammalian senses, including touch, taste and smell. Starting with a brief survey of sensory TRP channels in invertebrate model systems, this review covers the current state of research on TRP channel function in the classical mammalian senses and summarizes how modulation of TRP channels can tune our sensations.  相似文献   

4.
Transient receptor potential (TRP) proteins are a family of ion channels central for sensory signaling. These receptors and, in particular, those involved in thermal sensing are also involved in pain signaling. Noteworthy, thermosensory receptors are polymodal ion channels that respond to both physical and chemical stimuli, thus integrating different environmental clues. In addition, their activity is modulated by algesic agents and lipidergic substances that are primarily released in pathological states. Lipids and lipid-like molecules have been found that can directly activate some thermosensory channels or modulate their activity by either potentiating or inhibiting it. To date, more than 50 endogenous lipids that can regulate TRP channel activity in sensory neurons have been described, thus representing the majority of known endogenous TRP channel modulators. Lipid modulators of TRP channels comprise lipids from a variety of metabolic pathways, including metabolites of the cyclooxygenase, lipoxygenase and cytochrome-P450 pathways, phospholipids and lysophospholipids. Therefore, TRP-channels are able to integrate and interpret incoming signals from the different metabolic lipid pathways. Taken together, the large number of lipids that can activate, sensitize or inhibit neuronal TRP-channels highlights the pivotal role of these molecules in sensory biology as well as in pain transduction and perception. This article is part of a Special Issue entitled: Lipid–protein interactions. Guest Editors: Amitabha Chattopadhyay and Jean-Marie Ruysschaert.  相似文献   

5.
The sensation of cold or heat depends on the activation of specific nerve endings in the skin. This involves heat‐ and cold‐sensitive excitatory transient receptor potential (TRP) channels. However, we show here that the mechano‐gated and highly temperature‐sensitive potassium channels of the TREK/TRAAK family, which normally work as silencers of the excitatory channels, are also implicated. They are important for the definition of temperature thresholds and temperature ranges in which excitation of nociceptor takes place and for the intensity of excitation when it occurs. They are expressed with thermo‐TRP channels in sensory neurons. TRAAK and TREK‐1 channels control pain produced by mechanical stimulation and both heat and cold pain perception in mice. Expression of TRAAK alone or in association with TREK‐1 controls heat responses of both capsaicin‐sensitive and capsaicin‐insensitive sensory neurons. Together TREK‐1 and TRAAK channels are important regulators of nociceptor activation by cold, particularly in the nociceptor population that is not activated by menthol.  相似文献   

6.
Substantial progress in understanding thermal transduction in peripheral sensory nerve endings was achieved with the recent cloning of six thermally gated ion channels from the TRP (transient receptor potential) super-family. Two of these channels, TRP melastatin 8 (TRPM8) and TRP ankyrin 1 (TRPA1), are expressed in dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons, are activated by various degrees of cooling, and are candidates for mediating gentle cooling and noxious cold, respectively. However, accumulating evidence suggests that more than just these two channels are involved in cold sensing in mammals. A recent report described a critical role of the voltage-gated tetrodotoxin-resistant sodium channel Nav1.8 in perceiving intense cold and noxious stimuli at cold temperatures. Other ion channels, such as two-pore domain background potassium channels (K2P), are known to be expressed in peripheral nerves, have pronounced temperature dependence, and may contribute to cold sensing and/or cold hypersensitivity in pain states. This article reviews the evidence supporting a role for each of these channels in cold transduction, focusing on their biophysical properties, expression pattern, and modulation by pro-inflammatory mediators.  相似文献   

7.
Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.  相似文献   

8.
The transient receptor potential (TRP) channel superfamily plays a central role in transducing diverse sensory stimuli in eukaryotes. Although dissimilar in sequence and domain organization, all known TRP channels act as polymodal cellular sensors and form tetrameric assemblies similar to those of their distant relatives, the voltage-gated potassium (Kv) channels. Here, we investigated the related questions of whether the allosteric mechanism underlying polymodal gating is common to all TRP channels, and how this mechanism differs from that underpinning Kv channel voltage sensitivity. To provide insight into these questions, we performed comparative sequence analysis on large, comprehensive ensembles of TRP and Kv channel sequences, contextualizing the patterns of conservation and correlation observed in the TRP channel sequences in light of the well-studied Kv channels. We report sequence features that are specific to TRP channels and, based on insight from recent TRPV1 structures, we suggest a model of TRP channel gating that differs substantially from the one mediating voltage sensitivity in Kv channels. The common mechanism underlying polymodal gating involves the displacement of a defect in the H-bond network of S6 that changes the orientation of the pore-lining residues at the hydrophobic gate.  相似文献   

9.
The Drosophila TRPC channels TRP and TRPL are the founding members of the TRP superfamily of ion channels, proteins likely to be important components of calcium influx pathways. The activation of these channels in the context of fly phototransduction is one of the few in vivo models for TRPC channel activation and has served as a paradigm for understanding TRPC function. TRP and TRPL are activated by G-protein coupled PI(4,5)P2 hydrolysis through a mechanism in which IP3 receptor mediated calcium release seems dispensable. Recent analysis has provided compelling evidence that the accurate turnover of PI(4,5)P2 generated lipid messengers in essential for regulating TRP and TRPL activity. TRP channels also appear to exist in the context of a macromolecular complex containing key components involved in activation such as phospholipase Cβ and protein kinase C. This complex may be important for activation. The role of these protein and lipid elements in regulating TRP and TRPL activity is discussed in this review.  相似文献   

10.
Transient receptor potential (TRP) channels are widely found throughout the animal kingdom. By serving as cellular sensors for a wide spectrum of physical and chemical stimuli, they play crucial physiological roles ranging from sensory transduction to cell cycle modulation. TRP channels are tetrameric protein complexes. While most TRP subunits can form functional homomeric channels, heteromerization of TRP channel subunits of either the same subfamily or different subfamilies has been widely observed. Heteromeric TRP channels exhibit many novel properties compared to their homomeric counterparts, indicating that co-assembly of TRP channel subunits has an important contribution to the diversity of TRP channel functions.  相似文献   

11.
TRP channels as novel players in the pathogenesis and therapy of itch   总被引:1,自引:0,他引:1  
Itch (pruritus) is a sensory phenomenon characterized by a (usually) negative affective component and the initiation of a special behavioral act, i.e. scratching. Older studies predominantly have interpreted itch as a type of pain. Recent neurophysiological findings, however, have provided compelling evidence that itch (although it indeed has intimate connections to pain) rather needs to be understood as a separate sensory modality. Therefore, a novel pruriceptive system has been proposed, within which itch-inducing peripheral mediators (pruritogens), itch-selective receptors (pruriceptors), sensory afferents and spinal cord neurons, and defined, itch-processing central nervous system regions display complex, layered responses to itch. In this review, we begin with a current overview on the neurophysiology of pruritus, and distinguish it from that of pain. We then focus on the functional characteristics of the large family of transient receptor potential (TRP) channels in skin-coupled sensory mechanisms, including itch and pain. In particular, we argue that - due to their expression patterns, activation mechanisms, regulatory roles, and pharmacological sensitivities - certain thermosensitive TRP channels are key players in pruritus pathogenesis. We close by proposing a novel, TRP-centered concept of pruritus pathogenesis and sketch important future experimental directions towards the therapeutic targeting of TRP channels in the clinical management of itch.  相似文献   

12.
Premature activation of digestive enzymes within the pancreas which leads to autodigestion of the gland is an early step in the pathogenesis of pancreatitis. Pancreatic injury is followed by other manifestations of inflammation including plasma extravasation, edema, and neutrophil infiltration which constitute the features of pancreatitis. Recent studies indicate that neural innervation of the pancreas may play an important role in the initiation and maintenance of the inflammatory response to injury. The pancreas is innervated by vagal, sympathetic and parasympathetic neurons, as well as sensory neurons. Activation of pancreatic primary sensory neurons causes the release of inflammatory neuropeptides both in the spinal cord to signal pain and in the pancreas itself where they produce plasma extravasation and neutrophil infiltration. Recent studies indicate that primary sensory neurons of the pancreas express transient receptor potential V1 (TRPV1) channels whose activation induces pancreatic inflammation. Moreover, blockade of these TRP channels significantly ameliorates experimental pancreatitis. This review describes our current understanding of the role of TRPV1 channels in pancreatitis and illustrates how this mechanism might be used to direct future treatments of pancreatic diseases.  相似文献   

13.
Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral''s actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral''s stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral''s actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral''s broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.  相似文献   

14.
The transient receptor potential (TRP) multigene superfamily encodes integral membrane proteins that function as ion channels. Members of this family are conserved in yeast, invertebrates and vertebrates. The TRP family is subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like); the latter is found only in invertebrates and fish. TRP ion channels are widely expressed in many different tissues and cell types, where they are involved in diverse physiological processes, such as sensation of different stimuli or ion homeostasis. Most TRPs are non-selective cation channels, only few are highly Ca2+ selective, some are even permeable for highly hydrated Mg2+ ions. This channel family shows a variety of gating mechanisms, with modes of activation ranging from ligand binding, voltage and changes in temperature to covalent modifications of nucleophilic residues. Activated TRP channels cause depolarization of the cellular membrane, which in turn activates voltage-dependent ion channels, resulting in a change of intracellular Ca2+ concentration; they serve as gatekeeper for transcellular transport of several cations (such as Ca2+ and Mg2+), and are required for the function of intracellular organelles (such as endosomes and lysosomes). Because of their function as intracellular Ca2+ release channels, they have an important regulatory role in cellular organelles. Mutations in several TRP genes have been implicated in diverse pathological states, including neurodegenerative disorders, skeletal dysplasia, kidney disorders and pain, and ongoing research may help find new therapies for treatments of related diseases.  相似文献   

15.
Sensory neurons report a wide range of temperatures, from noxious heat to noxious cold. Natural products that elicit psychophysical sensations of hot or cold, such as capsaicin or menthol, were instrumental in the discovery of thermal detectors belonging to the transient receptor potential (TRP) family of cation channels. Studies are now beginning to reveal how these channels contribute to thermosensation and how chemical signaling pathways, such as those activated by tissue injury, alter thermal sensitivity through TRP channel modulation. Analysis of TRP channel expression among sensory neurons is also providing insight into how thermal stimuli are encoded by the peripheral nervous system.  相似文献   

16.
Pain TRPs   总被引:6,自引:0,他引:6  
Wang H  Woolf CJ 《Neuron》2005,46(1):9-12
Transient receptor potential (TRP) ion channels are molecular gateways in sensory systems, an interface between the environment and the nervous system. Several TRPs transduce thermal, chemical, and mechanical stimuli into inward currents, an essential first step for eliciting thermal and pain sensations. Precise regulation of the expression, localization, and function of the TRP channels is crucial for their sensory role in nociceptor terminals, particularly after inflammation, when they contribute to pain hypersensitivity by undergoing changes in translation and trafficking as well as diverse posttranslational modifications.  相似文献   

17.
Yao X  Kwan HY  Huang Y 《Neuro-Signals》2005,14(6):273-280
The transient receptor potential (TRP) channels are a group of Ca2+-permeable cation channels (except TRPM4 and TRPM5) that function as cellular sensors of various internal and external stimuli. Most of these channels are expressed in the nervous system and they play a key role in sensory physiology. They may respond to temperature, pressure, inflammatory agents, pain, osmolarity, taste and many other stimuli. Recent development indicates that the activity of these channels is regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. In this review, we present a comprehensive summary of the literature regarding the TRP channel regulation by different protein kinases.  相似文献   

18.
19.
Multimodal stimuli like heat, cold, bacterial or mechanical events are able to elicit pain, which is necessary to guarantee survival. However, the control of pain is of major clinical importance. The perception and transduction of pain is differentially modulated in the peripheral and central nervous system (CNS): while peripheral structures modulate these signals, the perception of pain occurs in the CNS. In recent years major advances have been made in the understanding of the processes which are involved in pain sensation. For the peripheral pain reception, the importance of specific pain receptors of the transition receptor pore (TRP)-family (e.g. the TRPV-1 receptor) has been analyzed. These receptors/channels are localized at the cell membrane of nociceptive neurones as well as in membranes of intracellular calcium stores like the endoplasmic reticulum. While the associated channel conducts different ions, a major proportion is calcium. Therefore, this review focuses on (1) the modulations of intracellular calcium ([Ca2+]i) initiated by the activation of pain receptors and (2) the consequences of [Ca2+]i changes for the processing of pain signals at the peripheral side. The possible interference of TRPV-1 induced [Ca2+]i modulations to the function of other membrane receptors and channels, like voltage gated calcium, sodium or potassium channels, or co-expressed CB1-receptors will be discussed. The latter interactions are of specific interest since the analgetic properties of endo- and exo-cannabinoids are mediated by CB1 receptors and their activation significantly modulates the calcium induced release of pain related transmitters. Furthermore, multiple cross links between different pain modulating intracellular pathways and their dependence on [Ca2+]i modulations will be illuminated. Overall, this review will summarize new insights resulting in the understanding of the prominent influence of [Ca2+]i for processes which are involved in pain sensation.  相似文献   

20.
The Drosophila TRPC channels TRP and TRPL are the founding members of the TRP superfamily of ion channels, proteins likely to be important components of calcium influx pathways. The activation of these channels in the context of fly phototransduction is one of the few in vivo models for TRPC channel activation and has served as a paradigm for understanding TRPC function. TRP and TRPL are activated by G-protein coupled PI(4,5)P(2) hydrolysis through a mechanism in which IP(3) receptor mediated calcium release seems dispensable. Recent analysis has provided compelling evidence that the accurate turnover of PI(4,5)P(2) generated lipid messengers in essential for regulating TRP and TRPL activity. TRP channels also appear to exist in the context of a macromolecular complex containing key components involved in activation such as phospholipase Cbeta and protein kinase C. This complex may be important for activation. The role of these protein and lipid elements in regulating TRP and TRPL activity is discussed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号