首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein signaling is commonly involved in regulating growth and differentiation of eukaryotic cells. We previously identified MAGB, encoding a Galpha subunit, from Magnaporthe grisea, and disruption of MAGB led to defects in a number of cellular responses, including appressorium formation, conidiation, sexual development, mycelial growth, and surface sensing. In this study, site-directed mutagenesis was used to further dissect the pleiotropic effects controlled by MAGB. Conversion of glycine 42 to arginine was predicted to abolish GTPase activity, which in turn would constitutively activate G protein signaling in magB(G42R). This dominant mutation caused autolysis of aged colonies, misscheduled melanization, reduction in both sexual and asexual reproduction, and reduced virulence. Furthermore, magB(G42R) mutants were able to produce appressoria on both hydrophobic and hydrophilic surfaces, although development on the hydrophilic surface was delayed. A second dominant mutation, magB(G203R) (glycine 203 converted to arginine), was expected to block dissociation of the Gbetagamma from the Galpha subunit, thus producing a constitutively inactive G protein complex. This mutation did not cause drastic phenotypic changes in the wild-type genetic background, other than increased sensitivity to repression of conidiation by osmotic stress. However, magB(G203R) is able to complement phenotypic defects in magB mutants. Comparative analyses of the phenotypical effects of different magB mutations are consistent with the involvement of the Gbetagamma subunit in the signaling pathways regulating cellular development in M. grisea.  相似文献   

2.
Control of chondrocyte differentiation is attained, in part, through G-protein signaling, but the functions of the RGS family of genes, well known to control G-protein signaling at the Galpha subunit, have not been studied extensively in chondrogenesis. Recently, we have identified the Rgs2 gene as a regulator of chondrocyte differentiation. Here we extend these studies to additional Rgs genes. We demonstrate that the Rgs4, Rgs5, Rgs7, and Rgs10 genes are differentially regulated during chondrogenic differentiation in vitro and in vivo. To investigate the roles of RGS proteins during cartilage development, we overexpressed RGS4, RGS5, RGS7, and RGS10 in the chondrogenic cell line ATDC5. We found unique and overlapping effects of individual Rgs genes on numerous parameters of chondrocyte differentiation. In particular, RGS5, RGS7, and RGS10 promote and RGS4 inhibits chondrogenic differentiation. The identification of Rgs genes as novel regulators of chondrogenesis will contribute to a better understanding of both normal cartilage development and the etiology of chondrodysplasias and osteoarthritis.  相似文献   

3.
Zhang H  Tang W  Liu K  Huang Q  Zhang X  Yan X  Chen Y  Wang J  Qi Z  Wang Z  Zheng X  Wang P  Zhang Z 《PLoS pathogens》2011,7(12):e1002450
A previous study identified MoRgs1 as an RGS protein that negative regulates G-protein signaling to control developmental processes such as conidiation and appressorium formation in Magnaporthe oryzae. Here, we characterized additional seven RGS and RGS-like proteins (MoRgs2 through MoRgs8). We found that MoRgs1 and MoRgs4 positively regulate surface hydrophobicity, conidiation, and mating. Indifference to MoRgs1, MoRgs4 has a role in regulating laccase and peroxidase activities. MoRgs1, MoRgs2, MoRgs3, MoRgs4, MoRgs6, and MoRgs7 are important for germ tube growth and appressorium formation. Interestingly, MoRgs7 and MoRgs8 exhibit a unique domain structure in which the RGS domain is linked to a seven-transmembrane motif, a hallmark of G-protein coupled receptors (GPCRs). We have also shown that MoRgs1 regulates mating through negative regulation of Gα MoMagB and is involved in the maintenance of cell wall integrity. While all proteins appear to be involved in the control of intracellular cAMP levels, only MoRgs1, MoRgs3, MoRgs4, and MoRgs7 are required for full virulence. Taking together, in addition to MoRgs1 functions as a prominent RGS protein in M. oryzae, MoRgs4 and other RGS and RGS-like proteins are also involved in a complex process governing asexual/sexual development, appressorium formation, and pathogenicity.  相似文献   

4.
Trimeric G-proteins transmit extracellular signals to various downstream effectors (e.g. MAP kinases) in eukaryotes. In the rice blast fungus Magnaporthe grisea, the Pmk1 MAP kinase is essential for appressorium formation and infectious growth. The pmk1 deletion mutant fails to form appressoria but still responds to exogenous cAMP for tip deformation. Since gene disruption mutants of three Galpha subunits still form appressoria and are phenotypically different from pmk1 mutants, it is likely that the Pmk1 pathway is activated by Gbeta in M. grisea. In this study, we isolated and characterized the MGB1 gene that encodes the G subunit in M. grisea. Mutants disrupted in MGB1 were reduced in conidiation. Conidia from mgb1 mutants were defective in appressorium formation and failed to penetrate or grow invasively on rice leaves. Exogenous cAMP induced appressorium formation in mgb1 mutants, but these appressoria were abnormal in shape and could not penetrate. The intracellular cAMP level was reduced in mgb1 mutants and the defects in conidiation and hyphal growth were partially suppressed with 1 mM cAMP. Transformants expressing multiple copies of MGB1 were able to form appressoria on hydrophilic surfaces. Our results suggest that MGB1 may be involved in the cAMP signalling for regulating conidiation, surface recognition and appressorium formation. The Pmk1 pathway may be the downstream target of MGB1 for regulating penetration and infectious hyphae growth in M. grisea.  相似文献   

5.
Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gαi1(G42R) binding to GDP·AlF4 or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with Gβγ and GoLoco motifs in any nucleotide state. The corresponding Gαq(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants.  相似文献   

6.
The regulators of G-protein signaling (RGS) proteins are important regulatory and structural components of G-protein coupled receptor complexes. RGS proteins are GTPase activating proteins (GAPs) of Gi-and Gq-class Galpha proteins, and thereby accelerate signaling kinetics and termination. Here, we mapped the chromosomal positions of all 21 Rgs genes in mouse, and determined human RGS gene structures using genomic sequence from partially assembled bacterial artificial chromosomes (BACs) and Celera fragments. In mice and humans, 18 of 21 RGS genes are either tandemly duplicated or tightly linked to genes encoding other components of G-protein signaling pathways, including Galpha, Ggamma, receptors (GPCR), and receptor kinases (GPRK). A phylogenetic tree revealed seven RGS gene subfamilies in the yeast and metazoan genomes that have been sequenced. We propose that similar systematic analyses of all multigene families from human and other mammalian genomes will help complete the assembly and annotation of the human genome sequence.  相似文献   

7.
R Ramanujam  X Yishi  H Liu  NI Naqvi 《PloS one》2012,7(7):e41084

Background

Rgs1, a prototypical Regulator of G protein Signaling, negatively modulates the cyclic AMP pathway thereby influencing various aspects of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. Rgs1 possesses tandem DEP motifs (termed DEP-A and DEP-B; for Dishevelled, Egl-10, Pleckstrin) at the N-terminus, and a Gα-GTP interacting RGS catalytic core domain at the C-terminus. In this study, we focused on gaining further insights into the mechanisms of Rgs1 regulation and subcellular localization by characterizing the role(s) of the individual domains and the full-length protein during asexual development and pathogenesis in Magnaporthe.

Methodology/Principal Findings

Utilizing western blot analysis and specific antisera against the N- and C-terminal halves of Rgs1, we identify and report the in vivo endoproteolytic processing/cleavage of full-length Rgs1 that yields an N-terminal DEP and a RGS core domain. Independent expression of the resultant DEP-DEP half (N-Rgs1) or RGS core (C-Rgs1) fragments, failed to complement the rgs1Δ defects in colony morphology, aerial hyphal growth, surface hydrophobicity, conidiation, appressorium formation and infection. Interestingly, the full-length Rgs1-mCherry, as well as the tagged N-terminal DEP domains (individually or in conjunction) localized to distinct punctate vesicular structures in the cytosol, while the catalytic RGS core motif was predominantly vacuolar.

Conclusions/Significance

Based on our data from sequence alignments, immuno-blot and microscopic analysis, we propose that the post-translational proteolytic processing of Rgs1 and the vacuolar sequestration of the catalytic RGS domain represents an important means of down regulating Rgs1 function and thus forming an additional and alternative means of regulating G protein signaling in Magnaporthe. We further hypothesize the prevalence of analogous mechanisms functioning in other filamentous fungi. Furthermore, we conclusively assign a specific vesicular/membrane targeting function for the N-terminal DEP domains of Rgs1 in the rice-blast fungus.  相似文献   

8.
Wang J  Xie Y  Wolff DW  Abel PW  Tu Y 《FEBS letters》2010,584(22):4570-4574
Regulator of G-protein signaling 4 (RGS4), an intracellular modulator of G-protein coupled receptor (GPCR)-mediated signaling, is regulated by multiple processes including palmitoylation and proteasome degradation. We found that co-expression of DHHC acyltransferases (DHHC3 or DHHC7), but not their acyltransferase-inactive mutants, increased expression levels of RGS4 but not its Cys2 to Ser mutant (RGS4C2S). DHHC3 interacts with and palmitoylates RGS4 but not RGS4C2S in vivo. Palmitoylation prolongs the half-life of RGS4 by over 8-fold and palmitoylated RGS4 blocked α1A-adrenergic receptor-stimulated intracellular Ca2+ mobilization. Together, our findings revealed that DHHC proteins could regulate GPCR-mediated signaling by increasing RGS4 stability.

Structured summary

MINT-8049215: Rgs4 (uniprotkb:P49799) physically interacts (MI:0915) with DHHC3 (uniprotkb:Q8R173) by anti-tag coimmunoprecipitation (MI:0007)  相似文献   

9.
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.  相似文献   

10.
We have characterized a novel member of the recently identified family of regulators of heterotrimeric G protein signalling (RGS) in the yeast Saccharomyces cerevisiae. The YOR107w/RGS2 gene was isolated as a multi-copy suppressor of glucose-induced loss of heat resistance in stationary phase cells. The N-terminal half of the Rgs2 protein consists of a typical RGS domain. Deletion and overexpression of Rgs2, respectively, enhances and reduces glucose-induced accumulation of cAMP. Overexpression of RGS2 generates phenotypes consistent with low activity of cAMP-dependent protein kinase A (PKA), such as enhanced accumulation of trehalose and glycogen, enhanced heat resistance and elevated expression of STRE-controlled genes. Deletion of RGS2 causes opposite phenotypes. We demonstrate that Rgs2 functions as a negative regulator of glucose-induced cAMP signalling through direct GTPase activation of the Gs-alpha protein Gpa2. Rgs2 and Gpa2 constitute the second cognate RGS-G-alpha protein pair identified in yeast, in addition to the mating pheromone pathway regulators Sst2 and Gpa1. Moreover, Rgs2 and Sst2 exert specific, non-overlapping functions, and deletion mutants in Rgs2 and Sst2 are complemented to some extent by different mammalian RGS proteins.  相似文献   

11.
In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate) highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA), Adenylate cyclase and Pth11 (a non-canonical GPCR) in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation) of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.  相似文献   

12.
Shen G  Wang YL  Whittington A  Li L  Wang P 《Eukaryotic cell》2008,7(9):1540-1548
Crg1 and Crg2 are regulators of G-protein signaling homologs found in the human fungal pathogen Cryptococcus neoformans. Crg1 negatively regulates pheromone responses and mating through direct inhibition of Galpha subunits Gpa2 and Gpa3. It has also been proposed that Crg2 has a role in mating, as genetic crosses involving Deltacrg2 mutants resulted in formation of hyperfilaments. We found that mutation of Gpa2 and Gpa3 partially suppressed the hyperfilamentation, mutation of Gpa3 alleviated Deltacrg2-specfic cell swelling, and mutation of the mitogen-activated protein kinase Cpk1 blocked both processes. These findings indicate that Gpa2 and Gpa3 function downstream of Crg2 and that Gpa3 is also epistatic to Crg2 in a Cpk1-dependent morphogenesis process linked to mating. Significantly, we found that Deltacrg2 mutants formed enlarged capsules that mimic cells expressing a constitutively active GPA1(Q284L) allele and that the levels of intracellular cyclic AMP (cAMP) were also elevated, suggesting that Crg2 also negatively regulates the Gpa1-cAMP signaling pathway. We further showed that Crg2 interacted with Gpa3 and Gpa1, but not Gpa2, in a pulldown assay and that Crg2 maintained a higher in vitro GTPase-activating protein activity toward Gpa3 and Gpa1 than to Gpa2. Finally, we found that dysregulation of cAMP due to the Crg2 mutation attenuated virulence in a murine model of cryptococcosis. Taken together, our study reveals Crg2 as an RGS (regulator of G-protein signaling) protein of multiregulatory function, including one that controls mating distinctly from Crg1 and one that serves as a novel inhibitor of Gpa1-cAMP signaling.  相似文献   

13.
Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits speeding deactivation. Galpha deactivation kinetics mediated by RGS are too fast to be directly studied using conventional radiochemical methods. We describe a stopped-flow spectroscopic approach to visualize these rapid kinetics by measuring the intrinsic tryptophan fluorescence decrease of Galpha accompanying GTP hydrolysis and Galpha deactivation on the millisecond time scale. Basal k(cat) values for Galpha(o), Galpha(i1), and Galpha(i2) at 20 degrees C were similar (0.025-0.033 s(-1)). Glutathione S-transferase fusion proteins containing RGS4 and an RGS7 box domain (amino acids 305-453) enhanced the rate of Galpha deactivation in a manner linear with RGS concentration. RGS4-stimulated rates could be measured up to 5 s(-1) at 3 microm, giving a catalytic efficiency of 1.7-2.8 x 10(6) m(-1) s(-1) for all three Galpha subunits. In contrast, RGS7 showed catalytic efficiencies of 0.44, 0.10, and 0.02 x 10(6) m(-1) s(-1) toward Galpha(o), Galpha(i2), and Galpha(i1), respectively. Thus RGS7 is a weaker GTPase activating protein than RGS4 toward all Galpha subunits tested, but it is specific for Galpha(o) over Galpha(i1) or Galpha(i2). Furthermore, the specificity of RGS7 for Galpha(o) does not depend on N- or C-terminal extensions or a Gbeta(5) subunit but resides in the RGS domain itself.  相似文献   

14.
Mutations impairing the GTPase activity of G protein Galpha subunits can result in activated Galpha subunits that affect signal transduction and cellular responses and, in some cases, promote tumor formation. An analogous mutation in the Dictyostelium Galpha4 subunit gene (Q200L substitution) was constructed and found to inhibit Galpha4-mediated responses to folic acid, including the accumulation of cyclic nucleotides and chemotactic cell movement. The Galpha4-Q200L subunit also severely inhibited responses to cAMP, including cyclic nucleotide accumulation, cAMP chemotaxis, and cellular aggregation. An analogous mutation in the Galpha2 subunit (Q208L substitution), previously reported to inhibit cAMP responses (K. Okaichi et al., 1992, Mol. Biol. Cell 3, 735-747), was also found to partially inhibit folic acid chemotaxis. Chemotactic responses to folic acid and cAMP and developmental aggregation were also inhibited by a mutant Galpha5 subunit with the analogous alteration (Q199L substitution). All aggregation-defective Galpha mutants were capable of multicellular development after a temporary incubation at 4 degrees C and this development was found to be dependent on wild-type Galpha4 function. This study indicates that mutant Galpha subunits can inhibit signal transduction pathways mediated by other Galpha subunits.  相似文献   

15.
16.
We have carried out an in silico exploration of the genomes of Aspergillus nidulans, Aspergillus fumigatus, and Aspergillus oryzae, and identified components of G-protein/cAMP-mediated signaling. Putative G-protein coupled receptors (GPCRs) were distributed over nine classes. The GPCRs within classes were well conserved among aspergilli but varied in other ascomycetes. As previously observed in A. nidulans and other fungi, three Galpha, one Gbeta, and one Ggamma subunits of G proteins were identified in A. fumigatus, whereas an additional likely non-functional Galpha subunit was present in A. oryzae. While most fungal species had five proteins containing the regulator of G-protein signaling (RGS) domain predicted to participate in attenuation of G-protein signaling, A. fumigatus and A. oryzae had an additional RGS protein (RgsD) related to RgsA of A. nidulans. Genes encoding adenylate cyclase, a regulatory subunit and two catalytic subunits of the cAMP-dependent protein kinase, were also identified in the three aspergilli. Finally, regulators of cAMP signaling including low- and high-affinity phosphodiesterases were identified. Taken together, our data indicate a striking diversity at the GPCR level, but little diversity of components at the G-protein and cAMP-signaling level. This may reflect the abilities of these fungi to adapt to various ecological niches and to integrate diverse environmental cues into highly conserved cellular processes.  相似文献   

17.
Lysophosphatidic acid is a bioactive phospholipid that is produced by and stimulates ovarian cancer cells, promoting proliferation, migration, invasion, and survival. Effects of LPA are mediated by cell surface G-protein coupled receptors (GPCRs) that activate multiple heterotrimeric G-proteins. G-proteins are deactivated by Regulator of G-protein Signaling (RGS) proteins. This led us to hypothesize that RGS proteins may regulate G-protein signaling pathways initiated by LPA in ovarian cancer cells. To determine the effect of endogenous RGS proteins on LPA signaling in ovarian cancer cells, we compared LPA activity in SKOV-3 ovarian cancer cells expressing G(i) subunit constructs that are either insensitive to RGS protein regulation (RGSi) or their RGS wild-type (RGSwt) counterparts. Both forms of the G-protein contained a point mutation rendering them insensitive to inhibition with pertussis toxin, and cells were treated with pertussis toxin prior to experiments to eliminate endogenous G(i/o) signaling. The potency and efficacy of LPA-mediated inhibition of forskolin-stimulated adenylyl cyclase activity was enhanced in cells expressing RGSi G(i) proteins as compared to RGSwt G(i). We further showed that LPA signaling that is subject to RGS regulation terminates much faster than signaling thru RGS insensitive G-proteins. Finally, LPA-stimulated SKOV-3 cell migration, as measured in a wound-induced migration assay, was enhanced in cells expressing Galpha(i2) RGSi as compared to cells expressing Galpha(i2) RGSwt, suggesting that endogenous RGS proteins in ovarian cancer cells normally attenuate this LPA effect. These data establish RGS proteins as novel regulators of LPA signaling in ovarian cancer cells.  相似文献   

18.
Regulators of G-protein signaling (RGS) proteins modulate signaling through heterotrimeric G-proteins. They act to enhance the intrinsic GTPase activity of the Galpha subunit but paradoxically have also been shown to enhance receptor-stimulated activation. To study this paradox, we used a G-protein gated K+ channel to report the dynamics of the G-protein cycle and fluorescence resonance energy transfer techniques with cyan and yellow fluorescent protein-tagged proteins to report physical interaction. Our data show that the acceleration of the activation kinetics is dissociated from deactivation kinetics and dependent on receptor and RGS type, G-protein isoform, and RGS expression levels. By using fluorescently tagged proteins, fluorescence resonance energy transfer microscopy showed a stable physical interaction between the G-protein alpha subunit and RGS (RGS8 and RGS7) that is independent of the functional state of the G-protein. RGS8 does not directly interact with G-protein-coupled receptors. Our data show participation of the RGS in the ternary complex between agonist-receptor and G-protein to form a "quaternary complex." Thus we propose a novel model for the action of RGS proteins in the G-protein cycle in which the RGS protein appears to enhance the "kinetic efficacy" of the ternary complex, by direct association with the G-protein alpha subunit.  相似文献   

19.
ABSTRACT: BACKGROUND: It has been well established that the Galpha subunit of the heterotrimeric G-protein in the wheat pathogen Stagonospora nodorum is required for a variety of phenotypes including pathogenicity, melanisation and asexual differentiation. The roles though of the Ggamma and Gbeta subunits though were unclear. The objective of this study was to identify and understand the role of these subunits and assess their requirement for pathogenicity and development. RESULTS: G-protein Ggamma and Gbeta subunits, named Gga1 and Gba1 respectively, were identified in the Stagonospora nodorum genome by comparative analysis with known fungal orthologues. A reverse genetics technique was used to study the role of these and revealed that the mutant strains displayed altered in vitro growth including a differential response to a variety of exogenous carbon sources. Pathogenicity assays showed that Stagonospora nodorum strains lacking Gba1 were essentially non-pathogenic whilst Gga1-impaired strains displayed significantly slower growth in planta. Subsequent sporulation assays showed that like the previously described Galpha subunit mutants, both Gba1 and Gga1 were required for asexual sporulation with neither mutant strain being able to differentiate either pycnidia nor pycnidiospores under normal growth conditions. Continued incubation at 4degreesC was found to complement the mutation in each of the G-protein subunits with nearly wild-type levels of pycnidia recovered. CONCLUSION: This study provides further evidence on the significance of cAMP-dependent signal transduction for many aspects of fungal development and pathogenicity. The observation that cold temperatures can complement the G-protein sporulation defect now provides an ideal tool by which asexual differentiation can now be dissected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号