首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Dianthin 30 and dianthin 32, two proteins isolated from the leaves of Diathus caryophyllus (carnation), were purified to homogeneity by chromatography on CM-cellulose. 2. The mol.wt. of dianthin 30 is 29 500 and that of dianthin 32 is 31 700. Both dianthins are glycoproteins containing mannose. 3. Dianthins inhibit protein synthesis in a lysate of rabbit reticulocytes, with an ID50 (concentration giving 50% inhibition) of 9.15 ng/ml (dianthin 30) and 3.6 ng/ml (dianthin 32). They act by damaging ribosomes in a less-than-equimolar ratio. Protein synthesis by intact cells is partially inhibited by dianthins at a concentration of 100 microgram/ml. 4. Dianthins mixed with tobacco-mosaic virus strongly decrease the number of local lesions on leaves of Nicotiana glutinosa.  相似文献   

2.
We have partially purified S-adenosylmethionine decarboxylase (EC 4.1.1.50, SAMDC) from carnation (Dianthus caryophyllus L.) petals and generated polyclonal antibodies against CSDC 16 protein (Leeet al., 1996) overexpressed inE. coli. The protein has been purified approximately 126.8 fold through the steps involving ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephacryl S-300 gel filtration. Its molecular mass was 42 kDa in native form and we could also detect a band of 32 kDa molecular mass on SDS-PAGE in western blot analysis using the polyclonal antibodies. The Km value of this enzyme forS-adenosylmethionine was 26.3 μM. The optimum temperature and pH forS-adenosylmethionine decarboxylase activity were 35°C and pH 8.0, respectively. Putrescine and Mg2+ had no effects on the activation of the enzyme activity. Mg2+ did not have any significant effects on the enzyme activity. SAMDC activity was inhibited by putrescine, spermidine and spermine. Methylglyoxal bis-(guanylhydrazone) (MGBG), carbonyl reagents such as hydroxylamine and phenylhydrazine, and sulfhydryl reagent such as 5,5′dithio-bis (2-nitrobenzoic acid) (DTNB) were effective inhibitors of the enzyme. However, isonicotinic acid hydrazide known as an inhibitor of 5′-pyridoxal phosphate (PLP) dependent enzyme activity had no significant effect on the enzyme activity. These results and our previously reported results (Leeet al., 1997b) suggest thatS-adenosylmethionine decarboxylase is a heterodimer, αβ, and some carbonyl group and sulfhydryl group are involved in the catalytic activity.  相似文献   

3.
Plants were regenerated via adventitious shoot initiation from petal explants of carnation (Dianthus caryophyllus L.) cultivars Crowley Sim, Ember Rose, Orchid Beauty, Red Sim, White Sim and from stem segments of Crowley Sim, Red Sim, White Sim. Differences in cultivar response were observed, with White Sim being the most responsive for both explant types. Plants were also regenerated from receptacles of this cultivar. The effect of different cytokinins on regeneration from petal and stem explants of cultivar White Sim was compared. Thidiazuron was more effective than 6-benzylaminopurine or kinetin. In stem explants, morphogenic capacity was determined by the developmental stage of the explant. Highest percentage of shoot formation was observed in the youngest stem segments, on all the cytokinins tested. Stem-derived plants grew faster than petal or receptacle-derived plants and produced normal, flowering plants eight to ten months after culture.  相似文献   

4.
To obtain carnation variants differing from those produced by organogenesis alone, in vitro petal cultures were subjected to gamma irradiation. Histological analysis revealed the surface origin of buds and the different steps in meristem formation. A dose of 40 Gy administered on the fourth day of culture produced variants of horticultural interest in Niky. This period corresponded to dedifferentiation of cells that subsequently developed into bubs.Abbreviations BA benzyladenine - NAA naphthaleneacetic acid  相似文献   

5.
Conditions for efficient direct somatic embryogenesis and plant regeneration of leaf explants from carnation cultivars Lena (SIM group) and Bulgarian spray cultivars Nasslada, Yanita, Regina and Line 84 were established. Murashige and Skoog (MS) liquid medium supplemented with 1 mg/l 2,4-dichlorophenoxyacetic acid and 0.2 mg/l 6-benzylaminopurine was used for direct induction of embryoids without an additional callus phase. The first globular structures were observed after 20 days of cultivation. Their further development to the torpedo stage was correlated with the presence of polyethylene glycol (PEG 6000). Somatic embryo maturation was promoted by casein hydrolysate (1000 mg/l) in MS liquid media. The percentage conversion of embryos and polyembryos to whole plants varied between 10 and 75% among studied cultivars. Plantlets regenerated by this procedure were morphologically identical to the donor material and developed normally in a greenhouse. Received: 29 November 1996 / Revision received: 28 April 1997 / Accepted: 28 May 1998  相似文献   

6.
A flavonoid glycoside, kaempferol 3-O-β-d-glucopyranosyl (1  2)-O-β-d-glucopyranosyl (1  2)-O-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (1), along with two known C- and O-flavonoid glycosides (2 and 3, respectively), were isolated from carnation (Dianthus caryophyllus). The structures of the isolated compounds have been elucidated unambiguously by UV, MS, and a series of 1D and 2D NMR analyses. The isolated compounds and other flavonoid glycoside analogues exhibited antifungal activity against different Fusarium oxysporum f.sp. dianthi pathotypes.  相似文献   

7.
Somatic embryogenesis and plantlet formation were obtained from 60–75 day old cell cultures of carnation. Callus was generated on MS basal medium supplemented with 2,4-dichchlorophenoxy acetic acid (2,4-D). Removal of 2,4-D during subsequent subculturing of cell suspensions resulted in formation of embroids. These somatic embryos originated from single cells and their early development proceeded normally with clearly defined apical and root meristems. Some embryos developed into plants and were acclimatized to ex vitro conditions.  相似文献   

8.
An O-methyltransferase (OMT) which methylates the 2'-hydroxyl of isoliquiritigenin (2',4,4'-trihydroxychalcone) was identified in alfalfa (Medicago sativa L.) seedlings and cell cultures. The OMT activity increased during early stages of seedling development and was predominantly located in roots. Treatment of alfalfa cell cultures with an elicitor from yeast resulted in a fivefold increase in chalcone OMT activity, whereas treatment of seedlings with CuCl2 caused a reduction in activity. The chalcone OMT was purified to near homogeneity from elicited alfalfa cell cultures. Only one form of the enzyme was found. It consisted of an active monomer of subunit Mr 43,000 which could be photoaffinity labeled with S-adenosyl-L-[methyl-3H]methionine. The purified OMT had a pH optimum of 9.0, pI of 4.7, and was highly specific for the 2'-hydroxyl of 2',4,4'-trihydroxychalcone, with essentially no activity toward narigenin chalcone, caffeic acid, or daidzein. Kinetic analysis indicated a sequential bi bi mechanism with Km values of 2.2 and 17.7 microM for 2',4,4'-trihydroxychalcone and S-adenosyl-L-methionine, respectively. S-Adenosyl-L-homocysteine was a potent inhibitor. The chalcone OMT represents the third distinct OMT isolated from alfalfa cell cultures.  相似文献   

9.
Vitrified shoots regenerated from carnation petals (Dianthus caryophyllus L. cv. Scania) were recovered by culturing them in a medium containing 3.0 g/l Bacto-Peptone. Wax structures not found on vitrified shoots developed on the abaxial surface of leaves of recovered shoots and on those of normal leaves. Recovered shoots were rooted and successfully acclimatized while vitrified shoots could not survive the acclimatization process. The Bacto-Peptone solution was fractionated and the efficiency of each fraction for the recovery of vitrification was examined. Only basic, non high molecular fractions whose molecular weight was less than 10,000 were effective.  相似文献   

10.
Although the role of the gynoecium in natural senescence of the carnation flower has long been suggested, it has remained a matter of dispute because petal senescence in the cut carnation flower was not delayed by the removal of gynoecium. In this study, the gynoecium was snapped off by hand, in contrast to previous investigations where removal was achieved by forceps or scissors. The removal of the gynoecium by hand prevented the onset of ethylene production and prolonged the vase life of the flower, demonstrating a decisive role of the gynoecium in controlling natural senescence of the carnation flower. Abscisic acid (ABA) and indole-3-acetic acid (IAA), which induced ethylene production and accelerated petal senescence in carnation flowers, did not stimulate ethylene production in the flowers with gynoecia removed (-Gyn flowers). Application of 1-aminocyclopropane-1-carboxylate (ACC), the ethylene precursor, induced substantial ethylene production and petal wilting in the flowers with gynoecia left intact, but was less effective at stimulating ethylene production in the -Gyn flowers and negligible petal in-rolling was observed. Exogenous ethylene induced autocatalytic production of the gas and petal wilting in the -Gyn flowers. These results indicated that ethylene generated in the gynoecium triggers the onset of ethylene production in the petals of carnation during natural senescence.  相似文献   

11.
Highly efficient Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.) was obtained by first wounding stem explants via microprojectile bombardment. When this was followed by cocultivation with disarmed Agrobacterium in the dark, the transformation frequency-based on transient GUS expression-increased to over 10-fold that of explants wounded by other means and cocultivated under constant light. Two cycles of regeneration/selection on kanamycin were employed to generate stably transformed carnation plants and eliminate chimeras: first, plantlets were regenerated from inoculated stem explants and then leaves from these plantlets were used to generate transgenes in a second selection cycle of adventitious shoot regeneration. Agrobacterium strain AGLO, carrying the binary vector pCGN7001 containing uidA and nptII genes, was used in the stable transformation experiments. The combination of wounding via bombardment, cocultivation in the dark and two cycles of kanamycin selection yielded an overall transformation efficiency of 1–2 transgenes per 10 stem explants for the three carnation varieties analyzed. Histochemical and molecular analyses of marker genes in T0 and T1 generations confirmed the transgenic nature of the selected plants.  相似文献   

12.
Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC 4.4.1.14) genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and after treatment of fresh flowers with ethylene, production of ethylene and expression of ethylene biosynthetic genes first started in the ovary followed by the styles and the petals. ACC oxidase was expressed in all the floral organs whereas, during the vase life, tissue-specific expression of the two ACC synthase genes was observed. After treatment with a high ethylene concentration, tissue specificity of the two ACC synthase genes was lost and only a temporal difference in expression remained. In styles, poor correlation between ethylene production and ACC synthase (CARAS1) gene expression was observed suggesting that either activity is regulated at the translational level or that the CARAS1 gene product requires an additional factor for activity.Isolated petals showed no increase in ethylene production and expression of ethylene biosynthetic genes when excised from the flower before the increase in petal ethylene production (before day 7); showed rapid cessation of ethylene production and gene expression when excised during the early phase of petal ethylene production (day 7) and showed a pattern of ethylene production and gene expression similar to the pattern observed in the attached petals when isolated at day 8. The interorgan regulation of gene expression and ethylene as a signal molecule in flower senescence are discussed.  相似文献   

13.
Effects of cooling and rewarming rates on the survival of carnationshoot apices frozen to the temperature of liquid nitrogen wereinvestigated. Ten percent dimethyl sulfoxide (DMSO), alone orin combination with 5% glucose, sucrose or sorbitol was mosteffective as a cryoprotectant for carnation shoot apices. Theshoot apices survived slow freezing at about –70?C inthe presence of 10% DMSO. About 80% of the shoot apices survivedfreezing at the temperature of liquid nitrogen after prefreezingat –50?C or below, regardless of the rewarming rates.Shoot apices in the presence of 10% DMSO were cooled at differentrates then rewarmed rapidly. The survival rate gradually decreasedto zero as the cooling rate increased from about 0.5?C/min to50?C/min. At cooling rates higher than 50?C/min, no survivalwas observed even at 5?104?C/min. However, in apices prefrozenat –15?C or below then cooled ultrarapidly at 104?C/min,all remained alive with subsequent rapid rewarming. These apicesdeveloped normal young plants. This ultrarapid cooling methodcombined with prefreezing seems to be useful for the cryopreservationof shoot apices from various plants. 1Contribution No. 2207 from the Institute of Low TemperatureScience, Hokkaido University. This work was supported in partby a Grant-in-Aid (No. 434035) for Scientific Research fromthe Ministry of Education, Science and Culture. (Received November 13, 1979; )  相似文献   

14.
15.
Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.  相似文献   

16.
Senescence of carnation (Dianthus caryophyllus L. ev. White Sim) petals coincided with a decrease on a per flower basis in the yield of cell wall and ethanol-insoluble solids. The decrease in cell wall yield per flower was due largely to a loss of neutral sugars, primarily galactose (45%) and arabinose (23%). On a per flower basis, water-and chelator-soluble pectins increased throughout development, comprising in senescent petals 18 and 58%, respectively, of total pectin. Alkali-soluble pectins ranged from 35 to 45% of the total pectin and decreased during senescence. Gel chromatography of chelator- and alkali-soluble pectins revealed no change in molecular size and polygalacturonase activity was not detected. Large-molecular-size hemicelluloses decreased during development, an observation reminiscent of the changes affecting hemicelluloses during the ripening of a number of fruit types. Compositional analysis of the large hemicellulosic polymers revealed a decrease in xylose and galactose content.  相似文献   

17.
Severe water stress (40 and 50 h without water at 23°C) and long periods of refrigeration (4 and 5 weeks at 0°C) caused the peak of ethylene production by cut carnation flowers to appear soon after the return to normal conditions. Water stress caused a decrease in ψosm, but this increased back to the initial value on return to normal conditions. Accelerated wilting and massive ion leakage, probably a result of the Joss of membrane integrity, was associated with this premature burst of ethylene. Large amounts of acetaldehyde and ethanol accumulated during prolonged refrigeration (3, 4 or 5 weeks at 0°C). This accumulation of toxic metabolites may explain why the refrigeration of cut flowers for long periods causes a rapid wilting on return to normal conditions.  相似文献   

18.
Flavonoid analysis and supplementation experiments with dihydroflavonols and leucocyanidin on two cyanic, two acyanic and one white/red-variegated flowering strain of Dianthus caryophyllus (carnation) showed that in the acyanic strains recessive alleles (aa) of the gene A interrupt the anthocyanin pathway between dihydroflavonols and leucoanthocyanidins. The instability in the variegated strain involves the same step and is obviously caused by the multiple allele a var . In confirmation of these results, dihydroflavonol 4-reductase activity could be demonstrated in enzyme extracts from cyanic flowers and cyanic parts of variegated flowers but not in preparations from acyanic flowers or acyanic parts. The enzyme catalyzes the stereospecific reduction of (+)dihydrokaempferol to (+)-3,4-leucopelargonidin with NADPH as cofactor. A pH optimum around 7.0 and a temperature optimum at 30° C was determined, but the reduction reaction also proceeded at low temperatures. (+)Dihydroquercetin and (+)dihydromyricetin were also reduced to the respective flavan-3,4-cis-diols by the enzyme preparations from carnation flowers, and were even better substrates than dihydrokaempferol.These investigations were supported by grants from Fonds zur Förderung der wissenschaftlichen Forschung and Deutsche Forschungsgemeinschaft. The authors thank the market-gardens Ing. K. Rungaldier (Vienna, Austria), A. Sinner (Tübingen, FRG) and Barbaret & Blanc GMBH (Horhausen, FRG) for generous support with plant material.  相似文献   

19.
R. Nichols 《Planta》1976,133(1):47-52
Summary Histological examination of the ovary walls from ethylene-treated cut flowering stems of the carnation showed that the cells had enlarged and this appeared to account for the increased growth of the ovary which follows ethylene treatment of this flower. Sugar analyses of the flower parts indicated that growth of the ovary was accompanied by an increase in the ratio of sucrose to reducing sugars in the petals and ovary, and a net increase in sugars in the ovary. A sugar, tentatively identified as xylose, increased in the petals after ethylene treatment. Nitrogen, phosphorus and potassium contents of the ovary also increased after the ethylene treatment. The results, consistent with the hypothesis that sucrose is translocated in response to ethylene, are discussed in relation to previous work relating to the involvement of ethylene in flower senescence.  相似文献   

20.
Carnations have anthocyanins acylated with malate. Although anthocyanin acyltransferases have been reported in several plant species, anthocyanin malyltransferase (AMalT) activity in carnation has not been identified. Here, an acyl donor substance of AMalT, 1-O-β-d-malylglucose, was extracted and partially purified from the petals of carnation. This was synthesized chemically to analyze AMalT activity in a crude extract from carnation. Changes in the AMalT activity showed close correlation to the accumulation of pelargonidin 3-malylglucoside (Pel 3-malGlc) during the development of red petals of carnation, but neither AMalT activity nor Pel 3-malGlc accumulation was detectable in roots, stems and leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号