首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S-adenosyl-L-methionine:3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'-OMT) catalyzes the conversion of 3'-hydroxy-N-methylcoclaurine to reticuline, an important intermediate in synthesizing isoquinoline alkaloids. In an earlier step in the biosynthetic pathway to reticuline, another O-methyltransferase, S-adenosyl-L-methionine:norcoclaurine 6-O-methyltransferase (6-OMT), catalyzes methylation of the 6-hydroxyl group of norcoclaurine. We isolated two kinds of cDNA clones that correspond to the internal amino acid sequences of a 6-OMT/4'-OMT preparation from cultured Coptis japonica cells. Heterologously expressed proteins had 6-OMT or 4'-OMT activities, indicative that each cDNA encodes a different enzyme. 4'-OMT was purified using recombinant protein, and its enzymological properties were characterized. It had enzymological characteristics similar to those of 6-OMT; the active enzyme was the dimer of the subunit, no divalent cations were required for activity, and there was inhibition by Fe(2+), Cu(2+), Co(2+), Zn(2+), or Ni(2+), but none by the SH reagent. 4'-OMT clearly had different substrate specificity. It methylated (R,S)-6-O-methylnorlaudanosoline, as well as (R, S)-laudanosoline and (R,S)-norlaudanosoline. Laudanosoline, an N-methylated substrate, was a much better substrate for 4'-OMT than norlaudanosoline. 6-OMT methylated norlaudanosoline and laudanosoline equally. Further characterization of the substrate saturation and product inhibition kinetics indicated that 4'-OMT follows an ordered Bi Bi mechanism, whereas 6-OMT follows a Ping-Pong Bi Bi mechanism. The molecular evolution of these two related O-methyltransferases is discussed.  相似文献   

2.
In bacteria the oxygen-independent coproporphyrinogen-III oxidase catalyzes the oxygen-independent conversion of coproporphyrinogen-III to protoporphyrinogen-IX. The Escherichia coli hemN gene encoding a putative part of this enzyme was overexpressed in E. coli. Anaerobically purified HemN is a monomeric protein with a native M(r) = 52,000 +/- 5,000. A newly established anaerobic enzyme assay was used to demonstrate for the first time in vitro coproporphyrinogen-III oxidase activity for recombinant purified HemN. The enzyme requires S-adenosyl-l-methionine (SAM), NAD(P)H, and additional cytoplasmatic components for catalysis. An oxygen-sensitive iron-sulfur cluster was identified by absorption spectroscopy and iron analysis. Cysteine residues Cys(62), Cys(66), and Cys(69), which are part of the conserved CXXXCXXC motif found in all HemN proteins, are essential for iron-sulfur cluster formation and enzyme function. Completely conserved residues Tyr(56) and His(58), localized closely to the cysteine-rich motif, were found to be important for iron-sulfur cluster integrity. Mutation of Gly(111) and Gly(113), which are part of the potential GGGTP S-adenosyl-l-methionine binding motif, completely abolished enzymatic function. Observed functional properties in combination with a recently published computer-based enzyme classification (Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F., and Miller, N. E. (2001) Nucleic Acids Res. 29, 1097-1106) identifies HemN as "Radical SAM enzyme." An appropriate enzymatic mechanism is suggested.  相似文献   

3.
We reported that spermidine and spermine pools in the uterus both doubled within 24h after oestradiol administration to castrated rats (Russell & Taylor, 1971). Now we have studied the enzymic synthesis of spermine (by spermidine-dependent S-adenosyl-l-methionine decarboxylase) and find that the activity of the enzyme(s) involved is elevated soon after hormone administration. Enzyme activity is increased within 4h and is five times that of controls within 24h. Cycloheximide or actinomycin D administered at the time of oestradiol injection completely blocked the increase in enzyme activity. The enzyme involved in spermine synthesis, S-adenosyl-l-methionine decarboxylase, with S-adenosyl-l-methionine and spermidine as required substrates, was partially purified on Sephadex and DEAE-cellulose columns. The decarboxylation of S-adenosyl-l-methionine could not be separated from the transfer of a propylamine moiety from the decarboxylated S-adenosyl-l-methionine to spermidine to form spermine. We were unable also to separate this system from the enzyme that formed spermidine when S-adenosyl-l-methionine and putrescine are used as substrates. Spermidine-stimulated S-adenosyl-l-methionine decarboxylase has an apparent half-life of 60min, identical with the half-life reported for putrescine-stimulated S-adenosyl-l-methionine decarboxylase. These results strongly suggest that the same enzyme(s) operate in the synthesis of both spermidine and spermine.  相似文献   

4.
Mann S  Ploux O 《The FEBS journal》2006,273(20):4778-4789
Diaminopelargonic acid aminotransferase (DAPA AT), which is involved in biotin biosynthesis, catalyzes the transamination of 8-amino-7-oxononanoic acid (KAPA) using S-adenosyl-l-methionine (AdoMet) as amino donor. Mycobacterium tuberculosis DAPA AT, a potential therapeutic target, has been overproduced in Escherichia coli and purified to homogeneity using a single efficient step on a nickel-affinity column. The enzyme shows an electronic absorption spectrum typical of pyridoxal 5'-phosphate-dependent enzymes and behaves as a homotetramer in solution. The pH profile of the activity at saturation shows a single ionization group with a pK(a) of 8.0, which was attributed to the active-site lysine residue. The enzyme shows a Ping Pong Bi Bi kinetic mechanism with strong substrate inhibition with the following parameters: K(mAdoMet) = 0.78 +/- 0.20 mm, K(mKAPA) = 3.8 +/- 1.0 microm, k(cat) = 1.0 +/- 0.2 min(-1), K(iKAPA) = 14 +/- 2 microm. Amiclenomycin and a new analogue, 4-(4c-aminocyclohexa-2,5-dien-1r-yl)propanol (referred to as compound 1), were shown to be suicide substrates of this enzyme, with the following inactivation parameters: K(i) = 12 +/- 2 microm, k(inact) = 0.35 +/- 0.05 min(-1), and K(i) = 20 +/- 2 microm, k(inact) = 0.56 +/- 0.05 min(-1), for amiclenomycin and compound 1, respectively. The inactivation was irreversible, and the partition ratios were 1.0 and 1.1 for amiclenomycin and compound 1, respectively, which make these inactivators particularly efficient. compound 1 (100 microg.mL(-1)) completely inhibited the growth of an E. coli C268bioA mutant strain transformed with a plasmid expressing the M. tuberculosis bioA gene, coding for DAPA AT. Reversal of the antibiotic effect was observed on the addition of biotin or DAPA. Thus, compound 1 specifically targets DAPA AT in vivo.  相似文献   

5.
6.
Cloning and characterization of Arabidopsis thaliana pyridoxal kinase   总被引:1,自引:0,他引:1  
Lum HK  Kwok F  Lo SC 《Planta》2002,215(5):870-879
Pyridoxal kinase (PK; EC 2.7.1.35), a key enzyme in vitamin B(6) metabolism, was cloned from Arabidopsis thaliana (L.) Heynh. and characterized. The amino acid sequence of the A. thaliana PK was found to be similar to the mammalian enzyme, with a homology of more than 40%. Characterization studies showed that the kinase is a dimeric molecule consisting of two identical subunits, each subunit having a molecular mass of approximately 35 kDa. The enzyme exhibited maximal activity at pH 6.0. Similar to the mammalian enzyme, the enzyme from A. thaliana preferred Zn(2+) instead of the commonly used Mg(2+) as the divalent cation for catalysis. Under optimal conditions, the V(max) of the enzyme was 604 nmol pyridoxal 5'-phosphate (PLP) mg(-1) min(-1), and the K(m) values for pyridoxal and ATP were 688 micro M and 98 micro M, respectively. Examination of levels of enzyme expression showed that leaves, stems, roots and flowers can generate PLP independently at similar levels. Furthermore, expression of the PK gene in A. thaliana seeds was found to start 60 h after imbibition. Results from the present study suggest that plant tissues depend on PK for the production of PLP.  相似文献   

7.
Cytosolic fructose-1,6-bisphosphatase was purified to apparent homogeneity from the leaves of apple, a sorbitol synthesizing species. The enzyme was a homotetramer with a subunit mass of 37 kDa, and was highly specific for fructose 1,6-bisphosphate (F1,6BP) with a Km of 3.1 micro M and a Vmax of 48 units (mg protein)(-1). Either Mg2+ or Mn2+ was required for its activity with a Km of 0.59 mM and 62 micro M, respectively. Li+, Ca2+, Zn2+, Cu2+ and Hg2+ inhibited whereas Mn2+ enhanced the Mg2+ activated enzyme activity. Fructose 6-phosphate (F6P) was found to be a mixed type inhibitor with a Ki of 0.47 mM. Fructose 2,6-bisphosphate (F2,6BP) competitively inhibited the enzyme activity and changed the substrate saturation curve from hyperbolic to sigmoidal. AMP was a non-competitive inhibitor for the enzyme. F6P interacted with F2,6BP and AMP in a synergistic way to inhibit the enzyme activity. Dihydroxyacetone phosphate slightly inhibited the enzyme activity in the presence or absence of F2,6BP. Sorbitol increased the susceptibility of the enzyme to the inhibition by high concentrations of F1,6BP. High concentrations of sorbitol in the reaction mixture led to a reduction in the enzyme activity.  相似文献   

8.
The phenol compositions of two cultivars of carnation (Dianthus caryophyllus) namely "Gloriana" and "Roland", which are partially and highly resistant, respectively, to Fusarium oxysporum f. sp. dianthi have been investigated with the aim of determining if endogenous phenols could have an anti-fungal effect against the pathogen. Analyses were performed on healthy and F. oxysporum-inoculated in vitro tissues, and on in vivo plants. Two benzoic acid derivatives, protocatechuic acid (3,4-dihydroxybenzoic acid) and vanillic acid (4-hydroxy-3-methoxybenzoic acid), were found within healthy and inoculated tissues of both cultivars, together with the flavonol glycoside peltatoside (3-[6-O-(alpha-L-arabinopyranosyl)-beta-D-glucopyranosyl] quercetin). These molecules proved to be only slightly inhibitory towards the pathogen. 2,6-Dimethoxybenzoic acid was detected in small amounts only in the inoculated cultivar "Gloriana", while the highly resistant cultivar "Roland" showed the presence of the flavone datiscetin (3,5,7,2'-tetrahydroxyflavone). The latter compound exhibited an appreciable fungitoxic activity towards F. oxysporum f. sp. dianthi.  相似文献   

9.
用HPLC纯化了荧光标记的底物(Gnβ1-2Ma1-6(Gnβ1-2Mα1-3)Mβ1-4Goβ1-4Gn-PA)用β-1,4-半乳糖基转移酶的荧光标记底物的HPLC测定方法,测定了在发育过程中大鼠肝,肾,脑中的酶活性的变化,结果表明,(1)在正常成年大鼠中,各组织酶活性具有组织特异性,(2)不同的发育期,其酶活性不同。胎鼠(孕20d,以下同)时最高,以后就渐渐下降,各组织酶活力变化幅度是不一致的,这些变化的生理意义有待子进一步研究.  相似文献   

10.
A purified preparation of ATPase (factor F1) from the Acholeplasma laidlawii was obtained. The purification procedure included extraction of the enzyme complex from the isolated membranes by ultrasonication, chromatography on DEAE-cellulose and gel filtration on Sepharose 6B. The specific activity of the ATPase was increased 30-fold as compared to the original activity. The Km value for ATP hydrolysis was 7,4 . 10(-4) M. ADP competitively inhibited the enzyme (Ki = 2,0 . 10(-4) M). Ouabain (2,5 . 10(-4) M) and dicyclohexylcarbodiimide (1,0 . 10(-4) M) did not inhibit the ATPase activity. The enzyme was activated by Mg2+, but was inhibited by a combination of Na+ and K+. The enzyme is cold-labile, but can be stabilized by storage in buffer solutions, containing methanol, glycerol or lecithin.  相似文献   

11.
4-Coumarate:coenzyme A ligase (4CL) plays a key role in phenylpropanoid metabolism, providing precursors for a large variety of important plant secondary metabolites, such as lignin, flavonoids, and phytoalexins. Although 4CLs have been believed to be specific to plants, a gene encoding a 4CL-like enzyme which shows more than 40% identity in amino acid sequence to plant 4CLs was found in the genome of the gram-positive, filamentous bacterium Streptomyces coelicolor A3(2). The recombinant enzyme, produced in Escherichia coli with a histidine tag at its N-terminal end, showed distinct 4CL activity. The optimum pH and temperature of the reaction were pH 8.0 and 30 degrees C, respectively. The K(m) value for 4-coumarate and k(cat) were determined as 131 +/- 4 micro M and 0.202 +/- 0.007 s(-1), respectively. The K(m) value was comparable to those of plant 4CLs. The substrate specificity of this enzyme was, however, distinctly different from those of plant 4CLs. The enzyme efficiently converted cinnamate (K(m), 190 +/- 2 micro M; k(cat), 0.475 +/- 0.012 s(-1)), which is a very poor substrate for plant 4CLs. Furthermore, the enzyme showed only low activity toward caffeate and no activity toward ferulate, both of which are generally good substrates for plant 4CLs. The enzyme was therefore named ScCCL for S. coelicolor A3(2) cinnamate CoA ligase. To determine the amino acid residues providing the unique substrate specificity of ScCCL, eight ScCCL mutant enzymes having a mutation(s) at amino acid residues that probably line up along the substrate-binding pocket were generated. Mutant A294G used caffeate as a substrate more efficiently than ScCCL, and mutant A294G/A318G used ferulate, which ScCCL could not use as a substrate, suggesting that Ala(294) and Ala(318) are involved in substrate recognition. Furthermore, the catalytic activities of A294G and A294G/A318G toward cinnamate and 4-coumarate were greatly enhanced compared with those of the wild-type enzyme.  相似文献   

12.
We carried out a steady state kinetic analysis of the bacteriophage T4 DNA-[N6-adenine]methyltransferase (T4 Dam) mediated methyl group transfer reaction from S-adenosyl-l-methionine (AdoMet) to Ade in the palindromic recognition sequence, GATC, of a 20-mer oligonucleotide duplex. Product inhibition patterns were consistent with a steady state-ordered bi-bi mechanism in which the order of substrate binding and product (methylated DNA, DNA(Me) and S-adenosyl-l-homocysteine, AdoHcy) release was AdoMet downward arrow DNA downward arrow DNA(Me) upward arrow AdoHcy upward arrow. A strong reduction in the rate of methylation was observed at high concentrations of the substrate 20-mer DNA duplex. In contrast, increasing substrate AdoMet concentration led to stimulation in the reaction rate with no evidence of saturation. We propose the following model. Free T4 Dam (initially in conformational form E) randomly interacts with substrates AdoMet and DNA to form a ternary T4 Dam-AdoMet-DNA complex in which T4 Dam has isomerized to conformational state F, which is specifically adapted for catalysis. After the chemical step of methyl group transfer from AdoMet to DNA, product DNA(Me) dissociates relatively rapidly (k(off) = 1.7 x s(-1)) from the complex. In contrast, dissociation of product AdoHcy proceeds relatively slowly (k(off) = 0.018 x s(-1)), indicating that its release is the rate-limiting step, consistent with kcat = 0.015 x s(-1). After AdoHcy release, the enzyme remains in the F conformational form and is able to preferentially bind AdoMet (unlike form E, which randomly binds AdoMet and DNA), and the AdoMet-F binary complex then binds DNA to start another methylation cycle. We also propose an alternative pathway in which the release of AdoHcy is coordinated with the binding of AdoMet in a single concerted event, while T4 Dam remains in the isomerized form F. The resulting AdoMet-F binary complex then binds DNA, and another methylation reaction ensues. This route is preferred at high AdoMet concentrations.  相似文献   

13.
Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase.   总被引:110,自引:0,他引:110  
Beef heart mitochondrial ATPase (F1) exhibited a single binding site for Pi. The interaction with Pi was reversible, partially dependent on the presence of divalent metal ions, and characterized by a dissociation constant at pH 7.5 of 80 micronM. A variety of substances known to influence oxidative phosphorylation or the activity of the soluble ATPase (F1) also influenced Pi binding by the enzyme. Thus aurovertin, an inhibitor of oxidative phosphorylation, which was bound tightly by F1 and inhibited ATPase activity, enhanced Pi binding via a 4-fold increase in the affinity of the enzyme for Pi (KD = 20 micronM) but did not alter binding stoichiometry. Anions such as SO4(2-), SO3(2-), chromate, and 2,4-dinitrophenolate, which stimulated ATPase activity of F1, also enhanced Pi binding. Inhibitors of ATPase activity such as nickel/bathophenanthroline and the protein ATPase inhibitor of Pullman and Monroy (Pullman, M. E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769) inhibited Pi binding. The adenine nucleotides ADP, ATP, and the ATP analog adenylyl imidodiphosphate as well as the Pi analog arsenate, also inhibited Pi binding. The observations suggest that the Pi binding site was located in or near an adenine nucleotide binding site on the molecule.  相似文献   

14.
We partially purified 1-aminocyclopropane-l-carboxy-late (ACC)oxidase from senescing petals of carnation {Dianthus caryophyllusL. cv. Nora) flowers and investigated its general characteristics,and, in particular, the inhibition of its activity by ACC analogs.The enzyme had an optimum pH at 7-7.5 and required Fe2+, ascorbateand NaHCO3 for its maximal activity. The Km for ACC was calculatedas 111-125 µM in the presence of NaHCO3. Its Mr was estimatedto be 35 and 36 kDa by gel-filtration chromatography on HPLCand SDS-PAGE, respectively, indicating that the enzyme existsin a monomeric form. These properties were in agreement withthose reported previously with ACC oxidases from different planttissues including senescing carnation petals. Among six ACCanalogs tested, l-aminocyclobutane-l-carboxylate (ACBC) inhibitedmost severely the activity of ACC oxidase from carnation petals.ACBC acted as a competitive inhibitor with the Ki of 20-31 µM.The comparison between the Km for ACC and the Ki for ACBC indicatedthat ACBC had an affinity which was ca. 5-fold higher than thatof ACC. Whereas ACC inactivated carnation ACC oxidase in a time-dependentmanner during incubation, ACBC did not cause the inactiva-tionof the enzyme. Preliminary experiments showed that ACBC andits N-substituted derivatives delayed the onset of senescencein cut carnation flowers. (Received August 19, 1996; Accepted November 26, 1996)  相似文献   

15.
Mizoi J  Nakamura M  Nishida I 《The Plant cell》2006,18(12):3370-3385
A TILLING strategy (for targeting-induced local-scale lesions in genomes) was used in Arabidopsis thaliana to isolate mutants of a gene encoding CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE (PECT; EC 2.7.7.14), a rate-limiting enzyme in phosphatidylethanolamine biosynthesis. A null mutation, pect1-6, caused embryo abortion before the octant stage. However, reciprocal crosses revealed that pect1-6 caused no significant gametophytic defect. In pect1-4, PECT activity was decreased by 74%. Growth was generally normal in these mutants, despite delays in embryo maturation and reduced fertility. At low temperatures, however, homozygotic pect1-4 plants displayed dwarfism. PECT activity was decreased by 47% in heterozygotic pect1-6 plants and by 80% in pect1-4/pect1-6 F1 plants, which also displayed a small but significant decrease of phosphatidylethanolamine and a reciprocal increase in phosphatidylcholine. These lipid changes were fully reversed by wild-type PECT1 expression. pect1-4/pect1-6 F1 plants displayed severe dwarfism, tissue abnormalities, and low fertility, which was attributable in part to inhibition of anther, embryo, and ovule development, as was the reduced fertility of pect1-4 seedlings. PECT1 cDNA expression under the control of an inducible promoter partially rectified the mutant phenotypes observed in pect1-4/pect1-6 F1 seedlings, indicating that malfunctions in different tissues have a synergistic effect on the mutant phenotypes.  相似文献   

16.
Benzoyl-CoA:anthranilate N-benzoyltransferase catalyzes the first committed reaction of phytoalexin biosynthesis in carnation (Dianthus caryophyllus L.), and the product N-benzoylanthranilate is the precursor of several sets of dianthramides. The transferase activity is constitutively expressed in suspension-cultured carnation cells and can be rapidly induced by the addition of yeast extract. The enzyme was purified to homogeneity from yeast-induced carnation cells and shown to consist of a single polypeptide chain of 53 kDa. Roughly 20% of the sequence was identified by micro-sequencing of tryptic peptides, and some of these sequences differed in a few amino acid residues only suggesting the presence of isoenzymes. A specific 0.8 kb cDNA probe was generated by RT-PCR, employing degenerated oligonucleotide primers complementary to two of the tryptic peptides and using poly(A)+ RNA from elicited carnation cells. Five distinct benzoyltransferase clones were isolated from a cDNA library, and three cDNAs, pchcbt1–3, were sequenced and shown to encode full-size N-benzoyltransferases. The translated peptide sequences revealed more than 95% identity among these three clones. The additional two clones harbored insert sequences mostly homologous with pchcbt1 but differing in the 3-flanking regions due to variable usage of poly(A) addition sites. The identity of the clones was confirmed by matching the translated polypeptides with the tryptic enzyme sequences as well as by the activity of the benzoyltransferase expressed in Escherichia coli. Therefore, carnation encodes a small family of anthranilate N-benzoyltransferase genes. In vitro, the benzoyltransferases exhibited narrow substrate specificity for anthranilate but accepted a variety of aromatic acyl-CoAs. Catalytic rates with cinnamoyl- or 4-coumaroyl-CoA exceeded those observed with benzoyl-CoA, although the corresponding dianthramides did not accumulate in vivo. Thus the cDNAs described represent also the first hydroxycinnamoyltransferases cloned from plants, which classifies the enzymes as hydroxycinnamoyl/benzoyltransferases.  相似文献   

17.
A novel chromatographic immunoaffinity procedure is described for the purification of Form I glucocerebrosidase (see J. M. F. G. Aerts, W. E. Donker-Koopman, M. K. Van der Vliet, L. M. V. Jonsson, E. I. Ginns, G. J. Murray, J. A. Barranger, J. M. Tager, and A. W. Schram, 1985, Eur. J. Biochem. 150, 565-574) from extracts of human tissues. The affinity support consists of two monoclonal anti-(glucocerebrosidase) antibodies immobilized by covalent coupling to CNBr-activated Sepharose 4B. After adsorption of the enzyme from a crude detergent extract, the column is washed successively with 30% ethylene glycol in citrate buffer (pH 6), 1% Triton X-100 in citrate phosphate buffer (pH 5.2), and 50% ethylene glycol in citrate buffer. The enzyme is eluted with 90% ethylene glycol in citrate buffer. After dilution to 30% ethylene glycol, the immunoaffinity purification is repeated. The procedure can be completed within less than 18 h. The final preparations have a high specific activity (50 U/mg protein (n = 4) for the placental enzyme) and contain no detectable impurities after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The yield is high (81 +/- 8% for the placental enzyme). The immunoaffinity column has a high capacity, can be regenerated easily, and can be utilized repeatedly without loss of activity.  相似文献   

18.
An exo-(1-->4)-beta-D-galactanase was isolated from ripe tomato fruit (Lycopersicon esculentum Mill. cv Ailsa Craig and cv Better Boy) using anion-exchange, gel filtration, and cation-exchange chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most active fraction revealed a predominant protein band at 75 kD and several minor bands. A 30-amino acid N-terminal sequence from this 75-kD protein showed a high degree of homology with other recently identified beta-galactosidase/ galactanase proteins from persimmon and apple fruits (I.-K. Kang, S.-G. Suh, K.C. Gross, J.-K. Byun [1994] Plant Physiol 105: 975-979; G.S. Ross, T. Wegrzyn, E.A. MacRae, R.J. Redgwell [1994] Plant Physiol 106: 521-528) and with the predicted polypeptide sequence encoded by the ethylene-regulated SR12 gene in carnation (K.G. Raghothama, K.A. Lawton, P.B. Goldsbrough, W.R. Woodson [1991] Plant Mol Biol 17: 61-71). The enzyme focused to a single band of beta-galactosidase activity on an isoelectrofocusing gel at pH 9.8. The enzyme was specific for (1-->4)-beta-D-galactan substrates with a pH optimum of 4.5. The only reaction product detected was monomeric galactose, indicating that the enzyme was an exo (1-->4)-beta-D-galactanase. beta-Galactanase activity increased at the onset of ripening in normal fruit, but no similar increase was detected in the nonripening mutants nor and rin. A tomato homolog (pTombetagal1) was isolated using the SR12 cDNA clone from carnation as a probe. This clone showed 73% identify at the amino acid level with beta-galactosidase-related sequences from apple and asparagus and 66% identity with SR12. pTombetagal1 is a member of a gene family. Northern analysis demonstrated that pTombetagal1 expression was ripening related in normal fruits, with lower levels apparent in the nonsoftening mutants.  相似文献   

19.
When the plasma concentrations of estrone sulfate (E1S) were measured in five menstrual cycles, the highest concentrations were found on the day of LH peak (14.25 nmol/l +/- 2.94 [SE]). Peak levels of E1S were 20 times higher than the highest E2 levels measured (0.769 +/- 0.276 nmol/l). To determine whether E1S can be metabolized by adult and fetal tissues we examined estrone (E1) sulfatase activity in brain and other tissues. E1 Sulfatase activity was present in all tissues studied including adult endometrium, fat and skin. When the rate of sulfatase activity was measured in homogenates of fetal hypothalamus, frontal cortex and pituitary (n = 4), the hypothalamic activity (306.0 +/- 39.1 [SE] pmol/min/mg protein) was significantly higher than that of the frontal cortex (127.4 +/- 19.4, P less than 0.002) or pituitary (193.7 +/- 43.3, P less than 0.03). This was not apparent in the adult (n = 2) where the enzyme activity was similar in the hypothalamus (413.9 +/- 27.3) and frontal cortex (446.3 +/- 82.2) and lower in the pituitary (98.2 +/- 19.2). The Km for E1 sulfatase in the fetal frontal cortex was 28.9 microM. The high E1 sulfatase activity in estrogen responsive target tissues, particularly fetal hypothalamus, accompanied by a large circulating reservoir of E1S, suggest that this enzyme could possibly have a regulatory role in controlling the level of intracellular estrogens and in modulating their intracellular function.  相似文献   

20.
Toluene dioxygenase (Tod) enzyme activity can be measured by the conversion of indole to indigo. Indigo is measured spectrophotometrically at 600 nm. However, this method is inadequate to measure the whole-cell enzyme activity when interference by suspended biomass is present. Indoxyl is a highly fluorescent intermediate in the conversion of indole to indigo by Tod. A fluorescence-based assay was developed and applied to monitor Tod activity in whole cells of Pseudomonas putida F1 biofilm from a continuously operated biofilter. Suspended growth studies with pure cultures indicated that indoxyl, as measured by fluorescence, correlated with indigo production (r(2)=0.89) as measured by spectrophotometry. Whole-cell enzyme activity was followed during growth on a minimal medium containing toluene. The maximum normalized whole cell enzyme activity of 19+/-1.5x10(-4) mg indigo (mg protein)(-1) min(-1) was reached during early stationary phase. P. putida F1 cells from a biofilm grown on vapor phase toluene had a normalized whole-cell enzyme activity of 5.0+/-0.2x10(-4) mg indigo (mg protein)(-1) min(-1). The half-life of whole-cell enzyme activity was estimated to be between 5.5 and 8 h in both suspended and biofilm growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号