首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene therapy is expected to treat various incurable diseases including viral infections, autoimmune disorders, and cancers. Cationic lipids (CL) have been used as carriers of therapeutic DNAs for gene therapy because they can form a complex with DNA and such a complex can be incorporated into cells and transport the bound DNA to cytosol. The CL/DNA complexes are called lipoplexes and categorized as a non-viral vector. Lipoplexes are often prepared by adding a neutral phospholipid dioleoylphosphatidylethanolamine (DOPE) to CL in order to enhance transfection. However, the role of DOPE is not fully understood. We synthesized a new CL having an ethylenediamine cationic head group, denoted by DA, and found that addition of DOPE to DA achieved a good efficiency, almost in the similar level of commonly used transfection reagent Lipofectamine 2000 (Invitrogen). The composition of DA:DOPE = 1:1 showed the highest efficiency. This lipoplex showed structural transition when pH was changed from 7 to 4, corresponding pH lowering in late endosome, while DOPE itself showed structural transition at more basic pH around 8. The present data showed that the DOPE/DA composition determines the structural transition pH and choosing a suitable pH, i.e., a suitable composition, is essential to increase the transfection efficiency.  相似文献   

2.
Biological membranes are two-dimensional mixtures of an enormous number of different components. Modeling cell membranes as simple bilayer mixtures reveals rich phase behavior, but how can we use the observed phase behavior to understand the real membranes?  相似文献   

3.
Mechanisms of cationic lipid-based nucleic acid delivery are receiving increasing attention, but despite this the factors that determine high or low activity of lipoplexes are poorly understood. This study is focused on the fine structure of cationic lipid-DNA complexes (lipoplexes) and its relevance to transfection efficiency. Monocationic (N-(1-(2,3-dioleoyloxy)propyl),N,N,N-trimethylammonium chloride, N-(1-(2,3-dimyristyloxypropyl)-N,N-dimethyl-(2-hydroxyethyl)ammonium bromide) and polycationic (2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanammonium trifluoroacetate) lipid-based assemblies, with or without neutral lipid (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, cholesterol) were used to prepare lipoplexes of different L(+)/DNA(-) charge ratios. Circular dichroism, cryogenic-transmission electron microscopy, and static light scattering were used for lipoplex characterization, whereas expression of human growth hormone or green fluorescent protein was used to quantify transfection efficiency. All monocationic lipids in the presence of inverted hexagonal phase-promoting helper lipids (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, cholesterol) induced appearance of Psi(-) DNA, a chiral tertiary DNA structure. The formation of Psi(-) DNA was also dependent on cationic lipid-DNA charge ratio. On the other hand, monocationic lipids either alone or with 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine as helper lipid, or polycationic 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanammonium trifluoroacetate-based assemblies, neither of which promotes a lipid-DNA hexagonal phase, did not induce the formation of Psi(-) DNA. Parallel transfection studies reveal that the size and phase instability of the lipoplexes, and not the formation of Psi(-) DNA structure, correlate with optimal transfection.  相似文献   

4.
The increasing use of cationic liposomes as vectors for DNA transfection of eukaryotic cells is due to its high efficiency and reproducibility. After the interaction of the DNA cationic-liposome complexes (DNA-CLC) with the plasma membrane, the entry into the cells delivers the DNA-CLC to the endosome-lysosome pathway where some of the DNA-CLC are degraded. The non-degraded DNA that escapes to the cytoplasm, still has to transverse the nuclear membrane to be transcribed and then translated. To improve the efficiency of the whole process, we can manipulate the DNA (sequences, promoters, enhancers, nuclear localisation signals, etc), the DNA-CLC (lipids) or the plasmatic, endosomal and/or nuclear cellular membranes (ultrasound, electroporation, Ca++, pH of the endosomes, mitosis, fusogenic peptides, nuclear localisation signals, etc). Most of these methods have been generally used individually but in combination, may greatly improve the efficiency and reproducibility of in vitro transfection. While much of this work remains yet to be done and present results further explored, the application of these efforts is essential to the future development of new gene therapy strategies.  相似文献   

5.
A plasmid expressing the beta-galactosidase enzyme was used to transfect Vero cells in order to evaluate the efficiency of a liposome-mediated transfection by circular and linear DNA. The results obtained showed a low rate of transfection by linear DNA:liposome complexes. To explore whether the structure of the complexes was interfering with the transfection, atomic force microscopy (AFM) was used. It has confirmed the difference between the linear and circular condensates: whereas the circular DNA:liposome complexes presented compact spherical or cylindrical structures of about 100-800 nm, the linear DNA showed pearl necklace-like structures, with pearls varying from 250 to 400 nm. On the basis of the theory proposed by Kuhn et al. (1999), low concentrations of cationic amphihile were used to neutralize or reverse the DNA charge in order to improve the transfection efficiency of the linear DNA. Using this method, we were able to obtain the expression of the transgene without an associated toxicity observed with the linear DNA liposome delivery.  相似文献   

6.
Three novel polycationic gemini amphiphiles with different spacers were developed and evaluated in terms of their physiochemical properties and transfection efficiencies. Cationic liposomes formed by these amphiphiles and the helper lipid DOPE were able to successfully condense DNA, as shown by gel mobility shift and ethidium bromide intercalation assays. Transfection activity of the liposomes was superior to Lipofectamine® 2000 and was dependent on spacer structure, hydrophobicity, and nucleic acid type (pDNA or siRNA). We demonstrated that the cationic liposomes 2X6/DOPE and 2X7/DOPE are potential non-toxic vehicles for gene delivery.  相似文献   

7.
Two double-tailed pyridinium cationic amphiphiles, differing only in the degree of unsaturation of the alkyl chains, have been selected for a detailed study of their aggregation behavior, under conditions employed for transfection experiments. The transfection efficiencies of the two molecules are remarkably different, especially when combined with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as helper lipid. The phase behavior of the cationic amphiphile/DOPE mixtures have been studied using (31)P- and (2)H-NMR (on deuterated cationic amphiphiles) as main techniques, to monitor independently the behavior of the two components. In water, the lamellar organization is dominant for both the surfactants in their mixtures with the helper lipid. In HEPES saline buffer (HBS), the mixtures of the unsaturated surfactant form inverted phases and, in particular, stable H(II) phases for DOPE contents > or =30 mol %. By contrast, the saturated surfactant does not form homogeneously mixed inverted phases in mixtures with DOPE at room temperature. However, mixed inverted phases are observed for this system at higher temperatures and, after mixing has been achieved by heating, the metastable mixed phases remain present for several hours at 5 degrees C. At 35 degrees C the dominant phase is the cubic phase. The lipoplex composed of equimolar mixtures of the unsaturated surfactant with DOPE and plasmid DNA was found to be organized in highly curved bilayers.  相似文献   

8.
Pyridinium amphiphiles, abbreviated as SAINT, are highly efficient vectors for delivery of DNA into cells. Within a group of structurally related compounds that differ in transfection capacity, we have investigated the role of the shape and structure of the pyridinium molecule on the stability of bilayers formed from a given SAINT and dioleoylphosphatidylethanolamine (DOPE) and on the polymorphism of SAINT/DOPE-DNA complexes. Using electron microscopy and small angle x-ray scattering, a relationship was established between the structure, stability, and morphology of the lipoplexes and their transfection efficiency. The structure with the lowest ratio of the cross-sectional area occupied by polar over hydrophobic domains (SAINT-2) formed the most unstable bilayers when mixed with DOPE and tended to convert into the hexagonal structure. In SAINT-2-containing lipoplexes, a hexagonal topology was apparent, provided that DOPE was present and complex assembly occurred in 150 mm NaCl. If not, a lamellar phase was obtained, as for lipoplexes prepared from geometrically more balanced SAINT structures. The hexagonal topology strongly promotes transfection efficiency, whereas a strongly reduced activity is seen for complexes displaying the lamellar topology. We conclude that in the DOPE-containing complexes the molecular shape and the nonbilayer preferences of the cationic lipid control the topology of the lipoplex and thereby the transfection efficiency.  相似文献   

9.
Several novel cationic amphiphiles, based on a hydrophobic cholesteryl or dioleoylglyceryl moiety, have been prepared whose hydrophobic and cationic portions are linked by ester bonds to facilitate efficient degradation in animal cells. Dispersions combining such cationic species with phosphatidylethanolamine (PE), certain structural analogues of PE or diacylglycerol can mediate efficient transfer of both nonexchangeable lipid probes and the DNA plasmid pSV2cat into cultured mammalian (CV-1 and 3T3) cells. The abilities of different types of cationic lipid dispersions to mediate transfection of mammalian cells with pSV2cat could not be directly correlated with their abilities to coalesce with other membranes, as assessed by their ability to intermix lipids efficiently with large unilamellar phosphatidylcholine/phosphatidylserine vesicles in the presence or absence of DNA. The cytotoxicities toward CV-1 cells of dispersions combining PE with most of the degradable cationic amphiphiles studied here compare favorably with those reported previously for similar dispersions containing other types of cationic amphiphiles. Fluorescent analogues of two of the diacylglycerol-based cationic amphiphiles examined in this study are shown to be readily degraded after incorporation into CV-1 cells from PE/cationic lipid dispersions.  相似文献   

10.

Background

Cationic lipid DNA complexes based on DOTAP (1,2-dioleoyl-3-(trimethyammonium) propane) and mixtures of DOTAP and cholesterol (DC) have been previously optimized for transfection efficiency in the absence of serum and used as a non-viral gene delivery system. To determine whether DOTAP and DC lipid DNA complexes could be obtained with increased transfection effciency in the presence of high serum concentrations, the composition of the complexes was varied systematically and a total of 162 different complexes were analyzed for transfection efficiency in the presence and absence of high serum concentrations.

Results

Increasing the ratio of DOTAP or DC to DNA led to a dose dependent enhancement of transfection efficiency in the presence of high serum concentrations up to a ratio of approximately 128 nmol lipid/μg DNA. Transfection efficiency could be further increased for all ratios of DOTAP and DC to DNA by addition of the DNA condensing agent protamine sulfate (PS). For DOTAP DNA complexes with ratios of ≤ 32 nmol/μg DNA, peak transfection efficiencies were obtained with 4 μg PS/μg DNA. In contrast, increasing the amount of PS of DC complexes above 0.5 μg PS /μg DNA did not lead to significant further increases in transfection efficiency in the presence of high serum concentrations. Four complexes, which had a similar high transfection efficiency in cell culture in the presence of low serum concentrations but which differed largely in the lipid to DNA ratio and the amount of PS were selected for further analysis. Intravenous injection of the selected complexes led to 22-fold differences in transduction efficiency, which correlated with transfection efficiency in the presence of high serum concentrations. The complex with the highest transfection efficiency in vivo consisted of 64 nmol DC/ 16 μg PS/ μg DNA. Physical analysis revealed a predicted size of 440 nm and the highest zeta potential of the complexes analyzed.

Conclusions

Optimization of cationic lipid DNA complexes for transfection efficiency in the presence of high concentrations of serum led to the identification of a DC complex with high transduction efficiency in mice. This complex differs from previously described ones by higher lipid to DNA and PS to DNA ratios. The stability of this complex in the presence of high concentrations of serum and its high transduction efficiency in mice suggests that it is a promising candidate vehicle for in vivo gene delivery.  相似文献   

11.
A series of charge-reversal lipids were synthesized that possess varying chain lengths and end functionalities. These lipids were designed to bind and then release DNA based on a change in electrostatic interaction with DNA. Specifically, a cleavable ester linkage is located at the ends of the hydrocarbon chains. The DNA release from the amphiphile was tuned by altering the length and position of the ester linkage in the hydrophobic chains of the lipids through the preparation of five new amphiphiles. The amphiphiles and corresponding lipoplexes were characterized by DSC, TEM, and X-ray, as well as evaluated for DNA binding and DNA transfection. For one specific charge-reversal lipid, stable lipoplexes of approximately 550 nm were formed, and with this amphiphile, effective in vitro DNA transfection activities was observed.  相似文献   

12.
P G Scherer  J Seelig 《Biochemistry》1989,28(19):7720-7728
The influence of electric surface charges on the polar headgroups and the hydrocarbon region of phospholipid membranes was studied by mixing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with charged amphiphiles. A positive surface charge was generated with dialkyldimethylammonium salts and a negative surface charge with dialkyl phosphates. The POPC:amphiphile ratio and hence the surface charge density could be varied over a large range since stable liquid-crystalline bilayers were obtained even for the pure amphiphiles in water. POPC was selectively deuterated at both methylene segments of the choline moiety and at the cis double bond of the oleic acyl chain. Additional experiments were carried out with 1,2-dipalmitoyl-rac-glycero-3-phosphocholine labeled at the C-2 position of the glycerol backbone. Deuterium, phosphorus, and nitrogen-14 nuclear magnetic resonance (NMR) spectra were recorded for liquid-crystalline bilayers with varying concentrations of amphiphiles. Although the hydrocarbon region and the glycerol backbone were not significantly influenced by the addition of amphiphiles, very large perturbations of the phosphocholine headgroup were observed. Qualitatively, these results were similar to those observed previously with other cationic and anionic molecules and suggest that the electric surface charge is the essential driving force in changing the phospholipid headgroup orientation and conformation. While the P-N dipole is approximately parallel to the membrane surface in the pure phospholipid membrane, the addition of a positively charged amphiphile or the binding of cationic molecules moves the N+ end of the dipole toward the water phase, changing the orientation of the phosphate segment by more than 30 degrees at the highest amphiphile concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
High-sensitivity scanning calorimetry has been used to examine the thermotropic behavior of mixtures combining dipalmitoylphosphatidylcholine (DPPC), phosphatidylethanolamine (DPPE) and O-methylphosphatidic acid (DPPA-OMe) with the double-chain cationic amphiphiles N,N-dihexadecyl-N,N- dimethylammonium chloride (DHDAC), 1,2-dipalmitoyloxy-3-(trimethylammonio)propane (DPTAP) and the corresponding monomethylated tertiary amino compounds (DHMMA-H+ and DPDAP-H+). At physiological ionic strength, mixtures of these cationic amphiphiles with the anionic phospholipid DPPA-OMe can show gel-to-liquid-crystalline phase transitions at considerably higher temperatures than do either of the pure components. Surprisingly, binary mixtures of DPPC and these cationic amphiphiles also show strongly nonideal mixing, with phase diagrams exhibiting pronounced maxima in their solidus and liquidus curves. Similar behavior is not observed for mixtures of DPPC with DPPA-OMe, which closely resembles DPTAP and DPDAP-H+ in backbone configuration and polar headgroup size. The present results suggest that perturbation of the orientation of the phosphatidylcholine headgroup by cationic amphiphiles, as demonstrated previously by Seelig and co-workers (Biochemistry 28 [1989], 7720-7728), can significantly affect the thermotropic behavior of phospholipids such as DPPC. Such effects may exert a generally important (though not always easily recognizable) influence on the organization and thermotropic behavior of systems where zwitterionic phospholipids are combined with charged bilayer-associated molecules.  相似文献   

14.
The interaction of DNA with monolayers of the cationic lipid dimethyldioctadecylammonium bromide, with/without 50 mol % of a neutral "helper" lipid, either dioleoylphosphatidylethanolamine or cholesterol, has been studied using specular neutron reflection, surface pressure-area isotherms, and Brewster angle microscopy. The amount of DNA bound to the lipid head groups has been comprehensively quantified in the range of 8-39 vol% of DNA with respect to the monolayer composition (monolayers composed of dimethyldioctadecylammonium bromide binding the most DNA and monolayers containing dioleoylphosphatidylethanolamine binding the least) and surface pressure (DNA binding being greatest at highest surface pressures). Surprisingly, regardless of these variables, the thickness of the DNA-containing layer remained approximately constant between 18 and 25 ?. This systematic study is the first direct quantification of the binding of DNA with two different helper-lipid-containing multicomponent monolayers, an important step toward understanding interaction parameters in more realistic models of gene delivery systems.  相似文献   

15.
Performances of cationic lipid formulations for intravenous gene delivery to mouse lungs have been previously reported. We report in this study that cationic phosphonolipids, when appropriately formulated, can be good synthetic vectors for gene delivery to lung after intravenous administration. One of our reagents, GLB43, was capable of mediating a 500-fold higher expression in the lungs of mice than could be obtained with free pDNA alone (P=0.018). We demonstrate that the most important parameters for cationic phosphonolipid transfection activity after systemic administration are the chemical structure of the cationic phosphonolipid, the lipid to DNA charge ratio and the inclusion of co-lipid in the formulation. We report using a luciferase reporter gene that transfection activity in vivo 24 h after cationic phosphonolipid systemic administration could not be predicted from in vitro analysis. In contrast to in vitro studies, cationic phosphonolipids including the oleyl acyl chains (GLB43) were more effective than its analogue with the myristyl acyl chains (GLB73). Using pathological analysis of animal livers, we demonstrate that the toxicity level was correlated with the lipoplex formulation and the lipid to DNA ratio.  相似文献   

16.
Synthetic cationic lipids can be used as DNA carriers and are regarded to be the most promising non-viral gene carriers. For this investigation, six novel phosphatidylcholine (PC) cationic derivatives with various hydrophobic moieties were synthesized and their transfection efficiencies for human umbilical artery endothelial cells (HUAEC) were determined. Three compounds with relatively short, myristoleoyl or myristelaidoyl 14:1 chains exhibited very high activity, exceeding by ∼ 10 times that of the reference cationic derivative dioleoyl ethylPC (EDOPC). Noteworthy, cationic lipids with 14:1 hydrocarbon chains have not been tested as DNA carriers in transfection assays previously. The other three lipids, which contained oleoyl 18:1 and longer chains, exhibited moderate to weak transfection activity. Transfection efficiency was found to correlate strongly with the effect of the cationic lipids on the lamellar-to-inverted hexagonal, Lα → HII, phase conversion in dipalmitoleoyl phosphatidylethanolamine dispersions (DPoPE). X-ray diffraction on binary DPoPE/cationic lipid mixtures showed that the superior transfection agents eliminated the direct Lα → HII phase transition and promoted formation of an inverted cubic phase between the Lα and HII phases. In contrast, moderate and weak transfection agents retained the direct Lα → HII transition but shifted to higher temperatures than that of pure DPoPE, and induced cubic phase formation at a later stage. On the basis of current models of lipid membrane fusion, promotion of a cubic phase by the high-efficiency agents may be considered as an indication that their high transfection activity results from enhanced lipoplex fusion with cellular membranes. The distinct, well-expressed correlation established between transfection efficiency of a cationic lipid and the way it modulates nonlamellar phase formation of a membrane lipid could be useful as a criterion to assess the quality of lipid carriers and for rational design of new and superior nucleotide delivery agents.  相似文献   

17.
Using a group of structurally related cytofectins, the effects of different vehicle constituents and mixing techniques on the physical properties and biological activity of lipoplexes were systematically examined. Physical properties were examined using a combination of dye accessibility assays, centrifugation, gel electrophoresis and dynamic light scattering. Biological activity was examined using in vitro transfection. Lipoplexes were formulated using two injection vehicles commonly used for in vivo delivery (PBS pH 7.2 and 0.9% saline), and a sodium phosphate vehicle previously shown to enhance the biological activity of naked pDNA and lipoplex formulations. Phosphate was found to be unique in its effect on lipoplexes. Specifically, the accessible pDNA in lipoplexes formulated with cytofectins containing a gamma-amine substitution in the headgroup was dependent on alkyl side chain length and sodium phosphate concentration, but the same effects were not observed when using cytofectins containing a beta-OH headgroup substitution. The physicochemical features of the phosphate anion, which give rise to this effect in gamma-amine cytofectins, were deduced using a series of phosphate analogs. The effects of the formulation vehicle on transfection were found to be cell type-dependent; however, of the formulation variables examined, the liposome/pDNA mixing method had the greatest effect on transgene expression in vitro. Thus, though predictive physical structure relationships involving the vehicle and cytofectin components of the lipoplex were uncovered, they did not extrapolate to trends in biological activity.  相似文献   

18.
Extent of binding (gamma 2(1)) of cationic surfactants cetyltrimethyl ammonium bromide (CTAB), myristyltrimethyl ammonium bromide (MTAB) and dodecyl trimethyl ammonium bromide (DTAB) to calf-thymus DNA, bovine serum albumin (BSA) and to their binary mixture respectively have been measured as function of bulk concentration of the surfactant by using equilibrium dialysis technique. Binding of CTAB has been studied at different pH, ionic strength (mu), temperature and biopolymer composition and with native and denatured states of the biopolymers. The chain-length of different long chain amines plays a significant role in the extent of binding under identical solution condition. The binding ratios for CTAB to collagen, gelatin, DNA-collagen and DNA-gelatin mixtures respectively have also been determined. The conformational structures of different biopolymers are observed to play significant role in macromolecular interactions between protein and DNA in the presence of CTAB. From the experimental values of the maximum binding ratio (gamma 2m) at the saturation level for each individual biopolymer, ideal values (gamma 2m)id have been theoretically calculated for binary mixtures of biopolymers using additivity rule. The protein-DNA-CTAB interaction in mixture has been explained in terms of the deviation (delta) of (gamma 2m) from (gamma 2m)id in the presence of a surfactant in bulk. The binding of surfactants to biopolymers and to their binary mixtures are compared more precisely in terms of the Gibbs' free energy decrease (-delta G degree) for the saturation of the binding sites in the biopolymers or biopolymer mixtures with the change of the bulk surfactant activity from zero to unity in the rational mole fraction scale.  相似文献   

19.
In this study the physicochemical and transfection properties of cationic hydroxyethylcellulose/plasmid DNA (pDNA) nanoparticles were investigated and compared with the properties of DNA nanoparticles based on polyethylene imine (PEI), which is widely investigated as a gene carrier. The two types of cationic hydroxyethylcelluloses studied, polyquaternium-4 (PQ-4) and polyquaternium-10 (PQ-10), are already commonly used in cosmetic and topical drug delivery devices. Both PQ-4 and PQ-10 spontaneously interact with pDNA with the formation of nanoparticles approximately 200 nm in size. Gel electrophoresis and fluorescence dequenching experiments indicated that the interactions between pDNA and the cationic celluloses were stronger than those between pDNA and PEI. The cationic cellulose/pDNA nanoparticles transfected cells to a much lesser extent than the PEI-based pDNA nanoparticles. The low transfection property of the PQ-4/pDNA nanoparticles was attributed to their neutrally charged surface, which does not allow an optimal binding of PQ-4/pDNA nanoparticles to cellular membranes. Although the PQ-10/pDNA nanoparticles were positively charged and thus expected to be taken up by cells, they were also much less efficient in transfecting cells than were PEI/pDNA nanoparticles. Agents known to enhance the endosomal escape were not able to improve the transfection properties of PQ-10/pDNA nanoparticles, indicating that a poor endosomal escape is, most likely, not the major reason for the low transfection activity of PQ-10/pDNA nanoparticles. We hypothesized that the strong binding of pDNA to PQ-10 prohibits the release of pDNA from PQ-10 once the PQ-10/pDNA nanoparticles arrive in the cytosol of the cells. Tailoring the nature and extent of the cationic side chains on this type of cationic hydroxyethylcellulose may be promising to further enhance their DNA delivery properties.  相似文献   

20.
In the design of new cationic lipids for gene transfection, the chemistry of linkers is widely investigated from the viewpoint of biodegradation and less from their contribution to the biophysical properties. We synthesized two dodecyl lipids with glutamide as the backbone and two lysines to provide the cationic headgroup. Lipid 1 differs from Lipid 2 by the presence of an amide linkage instead of an ester linkage that characterizes Lipid 2. The transfection efficiency of lipoplexes with cholesterol as colipid was found to be very high with Lipid 1 on Chinese Hamster Ovary (CHO) and HepG2 cell lines, whereas Lipid 2 has shown partial transfection efficiency on HepG2 cells. Lipid 1 was found to be stable in the presence of serum when tested in HepG2 and CHO cells albeit with lower activity. Fluorescence-based dye-binding and agarose gel-based assays indicated that Lipid 1 binds to DNA more efficiently than Lipid 2 at charge ratios of >1:1. The uptake of oligonucleotides with Lipid 1 was higher than Lipid 2 as revealed by confocal microscopy. Transmission electron microscopy (TEM) images reveal distinct formation of liposomes and lipoplexes with Lipid 1 but fragmented and unordered structures with Lipid 2. Fusion of Lipids 1 and 2 with anionic vesicles, with composition similar to plasma membrane, suggests that fusion of Lipid 2 was very rapid and unlike a fusion event, whereas the fusion kinetics of Lipid 1 vesicles was more defined. Differential scanning calorimetry (DSC) revealed a high T(m) for Lipid 1 (65.4 °C) while Lipid 2 had a T(m) of 23.5 °C. Surface area-pressure isotherms of Lipid 1 was less compressible compared to Lipid 2. However, microviscosity measured using 1,6-diphenyl-1,3,5-hexatriene (DPH) revealed identical values for vesicles made with either of the lipids. The presence of amide linker apparently resulted in stable vesicle formation, higher melting temperature, and low compressibility, while retaining the membrane fluid properties suggesting that the intermolecular hydrogen bonds of Lipid 1 yielded stable lipoplexes of high transfection efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号