共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Samuel C Wolff Katarzyna M Kedziora Raluca Dumitru Cierra D Dungee Tarek M Zikry Adriana S Beltran Rachel A Haggerty JrGang Cheng Margaret A Redick Jeremy E Purvis 《Molecular systems biology》2018,14(9)
It is well known that clonal cells can make different fate decisions, but it is unclear whether these decisions are determined during, or before, a cell's own lifetime. Here, we engineered an endogenous fluorescent reporter for the pluripotency factor OCT4 to study the timing of differentiation decisions in human embryonic stem cells. By tracking single‐cell OCT4 levels over multiple cell cycle generations, we found that the decision to differentiate is largely determined before the differentiation stimulus is presented and can be predicted by a cell's preexisting OCT4 signaling patterns. We further quantified how maternal OCT4 levels were transmitted to, and distributed between, daughter cells. As mother cells underwent division, newly established OCT4 levels in daughter cells rapidly became more predictive of final OCT4 expression status. These results imply that the choice between developmental cell fates can be largely predetermined at the time of cell birth through inheritance of a pluripotency factor. 相似文献
3.
Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems. 相似文献
4.
5.
人类的胚胎干细胞(embryonic stem cells,ES cells)可以用来治疗很多疾病,但是如果通过核移植来获得与供体或者患者相匹配的ES细胞,就会受到人卵母细胞来源等条件的制约。这就促使了将体细胞重编程为多潜能细胞这样一种技术策略的发展,其中包括将分化细胞与ES细胞融合,在卵细胞、ES细胞或多潜能癌细胞的抽提物中孵育,强制多潜能因子过表达等具体的方法。通过这些途径引出了一些核功能的重编程以及相应的DNA甲基化修饰、组蛋白翻译后修饰,使体细胞表达特定的多潜能因子,转变为类似胚胎干细胞的多潜能细胞。 相似文献
6.
体细胞通过重编程转变成其他类型的细胞,在再生医学方面具有重要的应用前景。细胞重编程的方法主要有体细胞核移植、细胞融合、细胞提取物诱导、限定因子诱导等,这些方法可以不同程度地改变细胞命运。最近,限定因子诱导的多能干细胞(induced pluripotent stem cell。iPS)为重编程提供了一种崭新的方法,不仅可以避免伦理争议,还提供了一种更为便利的技术,为再生医学开辟了新的天地;同时,iPS技术为研究基因表达调控、蛋白质互作、机体生长发育等提供了一个非常重要的研究手段。本文主要论述了体细胞重编程的方法及iPS细胞的进展、面临的问题和应用前景。 相似文献
7.
Piccolo FM Pereira CF Cantone I Brown K Tsubouchi T Soza-Ried J Merkenschlager M Fisher AG 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1575):2260-2265
Reprogramming differentiated cells towards pluripotency can be achieved by different experimental strategies including the forced expression of specific 'inducers' and nuclear transfer. While these offer unparalleled opportunities to generate stem cells and advance disease modelling, the relatively low levels of successful reprogramming achieved (1-2%) makes a direct analysis of the molecular events associated with productive reprogramming very challenging. The generation of transient heterokaryons between human differentiated cells (such as lymphocytes or fibroblasts) and mouse pluripotent stem cell lines results in a much higher frequency of successful conversion (15% SSEA4 expressing cells) and provides an alternative approach to study early events during reprogramming. Under these conditions, differentiated nuclei undergo a series of remodelling events before initiating human pluripotent gene expression and silencing differentiation-associated genes. When combined with genetic or RNAi-based approaches and high-throughput screens, heterokaryon studies can provide important new insights into the factors and mechanisms required to reprogramme unipotent cells towards pluripotency. 相似文献
8.
Nanog and transcriptional networks in embryonic stem cell pluripotency 总被引:31,自引:0,他引:31
9.
Preksha Gupta Thais Lavagnolli Hegias Mira-Bontenbal Amanda G. Fisher 《Cell cycle (Georgetown, Tex.)》2016,15(3):324-330
Cohesin is required for ES cell self-renewal and iPS-mediated reprogramming of somatic cells. This may indicate a special role for cohesin in the regulation of pluripotency genes, perhaps by mediating long-range chromosomal interactions between gene regulatory elements. However, cohesin is also essential for genome integrity, and its depletion from cycling cells induces DNA damage responses. Hence, the failure of cohesin-depleted cells to establish or maintain pluripotency gene expression could be explained by a loss of long-range interactions or by DNA damage responses that undermine pluripotency gene expression. In recent work we began to disentangle these possibilities by analyzing reprogramming in the absence of cell division. These experiments showed that cohesin was not specifically required for reprogramming, and that the expression of most pluripotency genes was maintained when ES cells were acutely depleted of cohesin. Here we take this analysis to its logical conclusion by demonstrating that deliberately inflicted DNA damage - and the DNA damage that results from proliferation in the absence of cohesin - can directly interfere with pluripotency and reprogramming. The role of cohesin in pluripotency and reprogramming may therefore be best explained by essential cohesin functions in the cell cycle. 相似文献
10.
Yuan Fang Jia Guo Shuang Wu Xuechun Li Jianchao Zhao Yan Li Shimeng Guo Yanshuang Mu Qingran Kong Zhonghua Liu 《Journal of cellular physiology》2020,235(4):3558-3568
Fusion of differentiated somatic cells with pluripotent stem cells can be used for cellular reprogramming, but the efficiency to obtain hybrid cells is extremely low. Here, we explored a novel cell fusion system, termed single-cell fusion, the efficiency was significantly improved verified by fusion of mouse embryonic stem cells (mESCs), comparing to traditional polyethylene glycol fusion. Then, we employed the optimized system to perform cell fusion of porcine embryonic fibroblasts (PEFs) and porcine pluripotent stem cells (pPSCs) with mESCs. The hybrid cells showed both red and green fluorescence and expressed species-specific genes of mouse and pig to evidence that the fusion was successful. The hybrid cells displayed characteristics similar with mESCs, including colony morphology, alkaline phosphatase positive and formation of embryoid body, and the expressions of core pluripotent factors OCT4, NANOG, and SOX2 of the pig were induced in the mESC/PEF hybrid cells. The results indicate PEFs and pPSCs could be reprogrammed by mESCs via the single-cell fusion. Taking advantage of the hybrid cells to investigate the signaling pathways depended on the pluripotency of pig, we suggest the transforming growth factor-β signaling pathways may play important roles. In summary, the single-cell fusion is highly efficient, and we believe in the future it will be widely used in the application and fundamental research. 相似文献
11.
12.
Masamitsu N. Asaka Kousuke Uranishi Ayumu Suzuki Masataka Hirasaki Masazumi Nishimoto Akihiko Okuda 《Development, growth & differentiation》2017,59(8):639-647
The Oct4 gene is a master regulator of the pluripotent properties of embryonic stem cells (ESCs). Recently, Oct4 loci were shown to frequently localize in close proximity to one another during the early stage of cellular differentiation, implicating this event as an important prerequisite step for ESCs to exert their full differentiation potential. Although the differentiation capacity of embryonal carcinoma cells (ECCs), such as F9 and P19 ECC lines, is severely restricted compared with ESCs, ECCs bear a highly similar expression profile to that of ESCs including expression of Oct4 and other pluripotency marker genes. Therefore, we examined whether allelic pairing of Oct4 loci also occurs during differentiation of F9 and P19 ECCs. Our data clearly demonstrate that this event is only observed within ESCs, but not ECCs, subjected to induction of differentiation, indicating transient allelic pairing of Oct4 loci as a specific feature of pluripotent ESCs. Moreover, our data revealed that this pairing did not occur broadly across chromosome 17, which carries the Oct4 gene, but occurred locally between Oct4 loci, suggesting that Oct4 loci somehow exert a driving force for their allelic pairing. 相似文献
13.
14.
15.
16.
Cloning methods are now well described and becoming routine. Yet the frequency at which cloned offspring are produced remains below 2% irrespective of nucleus donor species or cell type. Especially in the mouse, few laboratories can make clones from adult somatic cells, and most mouse strains never succeed to produce cloned mice. On the other hand, nuclear transfer can be used to generate embryonic stem (ntES) cell lines from a patient's own somatic cells. We have shown that ntES cells can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. Several reports have already demonstrated that ntES cells can be used in regenerative medicine in order to rescue immune deficient or infertile phenotypes. However, it is unclear whether ntES cells are identical to fertilized embryonic stem (ES) cells. In general, ntES cell techniques are expected to be applicable to regenerative medicine, however, these techniques can also be used for the preservation of the genetic resources of mouse strains instead of preserving such resources in embryos, oocytes or spermatozoa. This review seeks to describe the phenotype, application, and possible abnormalities of cloned mice and ntES cell lines. 相似文献
17.
18.
Vasilkova AA Kizilova HA Puzakov MV Shilov AG Zhelezova AI Golubitsa AN Battulin NR Vedernikov VE Menzorov AG Matveeva NM Serov OL 《Molecular reproduction and development》2007,74(8):941-951
Developmental potential was assessed in 8 intra-specific and 20 inter-specific hybrid clones obtained by fusion of embryonic stem (ES) cells with either splenocytes or fetal fibroblasts. Number of chromosomes derived from ES cells in these hybrid clones was stable while contribution of somatic partner varied from single chromosomes to complete complement. This allowed us to compare pluripotency of the hybrid cells with various numbers of somatic chromosomes. Three criteria were used for the assessment: (i) expression of Oct-4 and Nanog genes; (ii) analyses of teratomas generated by subcutaneous injections of the tested cells into immunodeficient mice; (iii) contribution of the hybrid cells in chimeras generated by injection of the tested cells into C57BL blastocysts. All tested hybrid clones showed expression of Oct-4 and Nanog at level comparable to ES cells. Histological and immunofluorescent analyses demonstrated that most teratomas formed from the hybrid cells with different number of somatic chromosomes contained derivatives of three embryonic layers. Tested hybrid clones make similar contribution in various tissues of chimeras in spite of significant differences in the number of somatic chromosomes they contained. The data indicate that pluripotency is manifested as a dominant trait in the ES hybrid cells and does not depend substantially on the number of somatic chromosomes. The latter suggests that the developmental potential derived from ES cells is maintained in ES-somatic cell hybrids by cis-manner and is rather resistant to trans-acting factors emitted from the somatic one. 相似文献
19.
BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone 总被引:1,自引:0,他引:1
Generation of induced pluripotent stem cells by defined factors has become a useful model to investigate the mechanism of reprogramming and cell fate determination. However, the precise mechanism of factor-based reprogramming remains unclear. Here, we show that Klf4 mainly acts at the initial phase of reprogramming to initiate mesenchymal-to-epithelial transition and can be functionally replaced by bone morphogenetic proteins (BMPs). BMPs boosted the efficiency of Oct4/Sox2-mediated reprogramming of mouse embryonic fibroblasts (MEFs) to ~1%. BMPs also promoted single-factor Oct4-based reprogramming of MEFs and tail tibial fibroblasts. Our studies clarify the contribution of Klf4 in reprogramming and establish Oct4 as a singular setter of pluripotency in differentiated cells. 相似文献
20.
《Cell Stem Cell》2021,28(10):1868-1883.e11