共查询到20条相似文献,搜索用时 8 毫秒
1.
Vitul Jain Haruhisa Kikuchi Yoshiteru Oshima Amit Sharma Manickam Yogavel 《Journal of structural and functional genomics》2014,15(4):181-190
Aminoacyl-tRNA synthetases (aaRSs) drive protein translation in cells and hence these are essential enzymes across life. Inhibition of these enzymes can halt growth of an organism by stalling protein translation. Therefore, small molecule targeting of aaRS active sites is an attractive avenue from the perspective of developing anti-infectives. Febrifugine and its derivatives like halofuginone (HF) are known to inhibit prolyl-tRNA synthetase of malaria parasite Plasmodium falciparum. Here, we present functional and crystallographic data on P. falciparum prolyl-tRNA synthetase (PfPRS). Using immunofluorescence data, we show that PfPRS is exclusively resident in the parasite cytoplasm within asexual blood stage parasites. The inhibitor HF interacts strongly with PfPRS in a non-competitive binding mode in presence or absence of ATP analog. Intriguingly, the two monomers that constitute dimeric PfPRS display significantly different conformations in their active site regions. The structural analyses presented here provide a framework for development of febrifugine derivatives that can seed development of new anti-malarials. 相似文献
2.
Curry S Roqué-Rosell N Zunszain PA Leatherbarrow RJ 《The international journal of biochemistry & cell biology》2007,39(1):1-6
The 3C protease from foot-and-mouth disease virus (FMDV 3C(pro)) is critical for viral pathogenesis, having vital roles in both the processing of the polyprotein precursor and RNA replication. Although recent structural and functional studies have revealed new insights into the mechanism and function of the enzyme, key questions remain that must be addressed before the potential of FMDV 3C(pro) as an antiviral drug target can be realised. 相似文献
3.
Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures. 相似文献
4.
The crystal structure of uridine monophosphate kinase (UMP kinase, UMPK) from the opportunistic pathogen Ureaplasma parvum was determined and showed similar three-dimensional fold as other bacterial and archaeal UMPKs that all belong to the amino acid kinase family. Recombinant UpUMPK exhibited Michaelis-Menten kinetics with UMP, with K(m) and V(max) values of 214 +/- 4 microm and 262 +/- 24 micromol.min(-1).mg(-1), respectively, but with ATP as variable substrate the kinetic analysis showed positive cooperativity, with an n value of 1.5 +/- 0.1. The end-product UTP was a competitive inhibitor against UMP and a noncompetitive inhibitor towards ATP. Unlike UMPKs from other bacteria, which are activated by GTP, GTP had no detectable effect on UpUMPK activity. An attempt to create a GTP-activated enzyme was made using site-directed mutagenesis. The mutant enzyme F133N (F133 corresponds to the residue in Escherichia coli that is involved in GTP activation), with F133A as a control, were expressed, purified and characterized. Both enzymes exhibited negative cooperativity with UMP, and GTP had no effect on enzyme activity, demonstrating that F133 is involved in subunit interactions but apparently not in GTP activation. The physiological role of UpUMPK in bacterial nucleic acid synthesis and its potential as target for development of antimicrobial agents are discussed. 相似文献
5.
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases. 相似文献
6.
Dengue viruses are members of the Flaviviridae and cause dengue fever and the more severe dengue hemorrhagic fever. Although nearly 40 % of the world's population is at risk of dengue infection, there is currently no effective vaccine or chemotherapy for the disease. Processing of the dengue polyprotein into structural and non-structural proteins in a host, which is essential for assembly of infective virions, is carried out by the combined action of host proteases and the trypsin-like, two-component viral NS2B/NS3 serine protease. Although NS2B strongly stimulates the catalytic NS3 protease domain, the latter is fully active against small substrates and possesses detectable activity against larger substrates, making both forms of the enzyme possible targets for drug design. In the crystal structure of a complex of the protease with a Bowman-Birk inhibitor reported here, an Arg residue at the P1 position of the inhibitor is bound in a manner distinctly different from that in other serine proteases of comparable specificity. However, because the regulatory component, NS2B, is not present in the complex, the physiological implications of this observations are currently unclear. The redundant nature of interaction of P1 Arg and Lys residues with Asp129, Tyr150 and Ser163 of the enzyme provides an explanation for the observed behavior of several site-specific mutants of Asp129 in the protease. The strong level of conservation of residues in the protease that interact with the P1 Arg, along with conservation of Arg at P1 of most cleavage sites in other flaviviruses, suggests that observations from this structure are likely to be applicable to many flaviviruses. The structure provides a starting point for design of site-specific mutations to probe the mechanism of catalysis by the catalytic domain, its activation by the regulatory domain and for design of specific inhibitors of enzymatic activity. 相似文献
7.
The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed. 相似文献
8.
Baines JD 《Trends in microbiology》2011,19(12):606-613
Herpes simplex virus (HSV) is an important pathogenic agent that causes recurrent oral and genital lesions, blindness and encephalitis. It is a member of the family Herpesviridae, which contains three subfamilies (alpha- beta- and gammaherpesvirinae) whose members infect humans to cause a variety of ailments, from benign rashes to nasopharyngeal carcinoma. Although this review focuses on HSV, the assembly steps that occur in the nucleus and the proteins involved are highly conserved among all family members, which suggests that antiviral agents that block these steps might be effective against many different herpesviruses and their associated diseases. Despite this potential, a broadly effective compound has yet to be realized, in part because many of the processes are only poorly understood in sufficient molecular detail. The goal of this review is to outline these intranuclear assembly steps and illustrate potential and existing antiviral strategies that exploit them. 相似文献
9.
Chen L DiGiammarino E Zhou XE Wang Y Toh D Hodge TW Meehan EJ 《The Journal of biological chemistry》2004,279(38):40204-40208
Rab GTPases and their effectors facilitate vesicular transport by tethering donor vesicles to their respective target membranes. Rab9 mediates late endosome to trans-Golgi transport and has recently been found to be a key cellular component for human immunodeficiency virus-1, Ebola, Marburg, and measles virus replication, suggesting that it may be a novel target in the development of broad spectrum antiviral drugs. As part of our structure-based drug design program, we have determined the crystal structure of a C-terminally truncated human Rab9 (residues 1-177) to 1.25-A resolution. The overall structure shows a characteristic nucleotide binding fold consisting of a six-stranded beta-sheet surrounded by five alpha-helices with a tightly bound GDP molecule in the active site. Structure-based sequence alignment of Rab9 with other Rab proteins reveals that its active site consists of residues highly conserved in the Rab GTPase family, implying a common catalytic mechanism. However, Rab9 contains seven regions that are significantly different in conformation from other Rab proteins. Some of those regions coincide with putative effector-binding sites and switch I and switch II regions identified by structure/sequence alignments. The Rab9 structure at near atomic resolution provides an excellent model for structure-based antiviral drug design. 相似文献
10.
Min-Han Lin Shang-Ju Chuang Chiao-Che Chen Shu-Chun Cheng Kai-Wen Cheng Chao-Hsiung Lin Chiao-Yin Sun Chi-Yuan Chou 《Journal of biomedical science》2014,21(1):54
Backgrounds
A new highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and Saudi Arabia and quickly spread to some European countries since September 2012. Until 15 May 2014, it has infected at least 572 people with a fatality rate of about 30% globally. Studies to understand the virus and to develop antiviral drugs or therapy are necessary and urgent. In the present study, MERS-CoV papain-like protease (PLpro) is expressed, and its structural and functional consequences are elucidated.Results
Circular dichroism and Tyr/Trp fluorescence analyses indicated that the secondary and tertiary structure of MERS-CoV PLpro is well organized and folded. Analytical ultracentrifugation analyses demonstrated that MERS-CoV PLpro is a monomer in solution. The steady-state kinetic and deubiquitination activity assays indicated that MERS-CoV PLpro exhibits potent deubiquitination activity but lower proteolytic activity, compared with SARS-CoV PLpro. A natural mutation, Leu105, is the major reason for this difference.Conclusions
Overall, MERS-CoV PLpro bound by an endogenous metal ion shows a folded structure and potent proteolytic and deubiquitination activity. These findings provide important insights into the structural and functional properties of coronaviral PLpro family, which is applicable to develop strategies inhibiting PLpro against highly pathogenic coronaviruses. 相似文献11.
12.
Mycobacterium tuberculosis is a pathogen of major global importance. Validated drug targets are required in order to develop novel therapeutics for drug-resistant strains and to shorten therapy. The Clp protease complexes provide a means for quality control of cellular proteins; the proteolytic activity of ClpP in concert with the ATPase activity of the ClpX/ClpC subunits results in degradation of misfolded or damaged proteins. Thus, the Clp system plays a major role in basic metabolism, as well as in stress responses and pathogenic mechanisms. M. tuberculosis has two ClpP proteolytic subunits. Here we demonstrate that ClpP1 is essential for viability in this organism in culture, since the gene could only be deleted from the chromosome when a second functional copy was provided. Overexpression of clpP1 had no effect on growth in aerobic culture or viability under anaerobic conditions or during nutrient starvation. In contrast, clpP2 overexpression was toxic, suggesting different roles for the two homologs. We synthesized known activators of ClpP protease activity; these acyldepsipeptides (ADEPs) were active against M. tuberculosis. ADEP activity was enhanced by the addition of efflux pump inhibitors, demonstrating that ADEPs gain access to the cell but that export occurs. Taken together, the genetic and chemical validation of ClpP as a drug target leads to new avenues for drug discovery. 相似文献
13.
Natarajan S 《Genetics and molecular biology》2010,33(2):214-219
The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS) proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of dengue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein. 相似文献
14.
15.
Liu CJ 《FEBS letters》2011,585(23):3675-3680
Progranulin (PGRN) is an autocrine growth factor with multiple functions. This review provides updates about the interplays of PGRN with extracellular matrix proteins, proteolytic enzymes, inflammatory cytokines, and cell surface receptors in cartilage and arthritis, with a special focus on the interaction between PGRN and TNF receptors (TNFR) and its implications in inflammatory arthritis. The paper also highlights Atsttrin, an engineered protein composed of three PGRN fragments that prevents inflammation in several inflammatory arthritis models. Identification of PGRN as a ligand of TNFR and an antagonist of TNFα signaling, together with the discovery of Atsttrin, not only betters our understanding of the pathogenesis of arthritis, but also provides new therapeutic interventions for various TNFα-mediated pathologies and conditions, including rheumatoid arthritis. 相似文献
16.
Cirri L Donnini S Morbidelli L Chiarugi P Ziche M Ledda F 《The International journal of biological markers》1999,14(4):263-267
Angiogenesis, the formation of new blood vessels from existing capillaries, is critical for tumors to grow beyond a few in size. Tumor cells produce one or more angiogenic factors including fibroblast growth factor and vascular endothelial growth factor. Surprisingly, antiangiogenic factors or angiogenesis inhibitors have been isolated from tumors. Some angiogenesis inhibitors, such as angiostatin, are associated with tumors while others, such as platelet-factor 4 and interferon-alpha are not. Endostatin, a C-terminal product of collagen XVIII, is a specific inhibitor of endothelial cell proliferation, migration and angiogenesis. The mechanism by which endostatin inhibits endothelial cell proliferation and migration is unknown. Endostatin was originally expressed in a prokaryotic system and, late, in a yeast system, thanks to which it is possible to obtain a sufficient quantity of the protein in a soluble and refolded form to be used in preclinical and clinical trials. 相似文献
17.
The simultaneous binding of multiple ligands on one entity to multiple receptors on another can result in an affinity that is significantly greater than that for the binding of a single ligand to a single receptor. This concept of "polyvalency" can be used to design molecules that are potent inhibitors of toxins and pathogens. We describe the design of potent polyvalent inhibitors that neutralize anthrax toxin in vivo as well as our attempts to elucidate the relationship between inhibitor structure and activity. We also highlight promising future avenues for research in polyvalent drug design. 相似文献
18.
Simonet G Claeys I Broeck JV 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2002,132(1):247-255
Recently, several arthropod peptides that belong to a new serine protease inhibitor family were discovered. Three members (HI, PMP-D2=LMCI-1 and PMP-C=LMCI-2) were isolated from the migratory locust, Locusta migratoria. Five additional members (SGPI-1-5) were identified in the desert locust Schistocerca gregaria, and a heterodimeric serine protease inhibitor (pacifastin) was isolated from the hemolymph of the crayfish Pacifastacus leniusculus. The light chain of pacifastin constitutes the inhibitory subunit that has nine cysteine-rich domains (PLDs) that are homologous with the locust inhibitors. These locust inhibitors and PLDs share a conserved array of six cysteine residues (Cys-Xaa(9-12)-Cys-Asn-Xaa-Cys-Xaa-Cys-Xaa(2-3)-Gly-Xaa(3-4)-Cys-Thr-Xaa(3)-Cys), which are involved in an identical disulfide bridge pattern (Cys(1)-Cys(4), Cys(2)-Cys(6), Cys(3)-Cys(5)). The solution structures of LMCI-1 and LMCI-2 showed a similar, compact, globular folding, which is unique within the group of the small 'canonical' inhibitors. Moreover, the reactive site, including the P1-P'1 bond was thoroughly investigated by means of synthetic variants. However, the biological function(s) of the locust inhibitors is (are) not fully understood. LMCI-1 and LMCI-2 were shown to inhibit the endogenous proteolytic activating cascade of prophenoloxidase. Northern blot analysis indicated that the genes encoding the SGPI precursors are differentially expressed in a time-, stage- and hormone-dependent manner. 相似文献
19.
Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis 总被引:1,自引:0,他引:1 下载免费PDF全文
In contrast with the model Escherichia coli Clp protease, the ATP-dependent Clp protease in higher plants has a remarkably diverse proteolytic core consisting of multiple ClpP and ClpR paralogs, presumably arranged within a dual heptameric ring structure. Using antisense lines for the nucleus-encoded ClpP subunit, ClpP6, we show that the Arabidopsis thaliana Clp protease is vital for chloroplast development and function. Repression of ClpP6 produced a proportional decrease in the Clp proteolytic core, causing a chlorotic phenotype in young leaves that lessened upon maturity. Structural analysis of the proteolytic core revealed two distinct subcomplexes that likely correspond to single heptameric rings, one containing the ClpP1 and ClpR1-4 proteins, the other containing ClpP3-6. Proteomic analysis revealed several stromal proteins more abundant in clpP6 antisense lines, suggesting that some are substrates for the Clp protease. A proteolytic assay developed for intact chloroplasts identified potential substrates for the stromal Clp protease in higher plants, most of which were more abundant in young Arabidopsis leaves, consistent with the severity of the chlorotic phenotype observed in the clpP6 antisense lines. The identified substrates all function in more general housekeeping roles such as plastid protein synthesis, folding, and quality control, rather than in metabolic activities such as photosynthesis. 相似文献