首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Short interspersed nuclear elements (SINEs) are small, non‐autonomous and heterogeneous retrotransposons that are widespread in plants. To explore the amplification dynamics and evolutionary history of SINE populations in representative deciduous tree species, we analyzed the genomes of the six following Salicaceae species: Populus deltoides, Populus euphratica, Populus tremula, Populus tremuloides, Populus trichocarpa, and Salix purpurea. We identified 11 Salicaceae SINE families (SaliS‐I to SaliS‐XI), comprising 27 077 full‐length copies. Most of these families harbor segmental similarities, providing evidence for SINE emergence by reshuffling or heterodimerization. We observed two SINE groups, differing in phylogenetic distribution pattern, similarity and 3′ end structure. These groups probably emerged during the ‘salicoid duplication’ (~65 million years ago) in the SalixPopulus progenitor and during the separation of the genus Salix (45–65 million years ago), respectively. In contrast to conserved 5′ start motifs across species and SINE families, the 3′ ends are highly variable in sequence and length. This extraordinary 3′‐end variability results from mutations in the poly(A) tail, which were fixed by subsequent amplificational bursts. We show that the dissemination of newly evolved 3′ ends is accomplished by a displacement of older motifs, leading to various 3′‐end subpopulations within the SaliS families.  相似文献   

3.
Short interspersed nuclear elements (SINEs) are non‐autonomous transposable elements which are propagated by retrotransposition and constitute an inherent part of the genome of most eukaryotic species. Knowledge of heterogeneous and highly abundant SINEs is crucial for de novo (or improvement of) annotation of whole genome sequences. We scanned Poaceae genome sequences of six important cereals (Oryza sativa, Triticum aestivum, Hordeum vulgare, Panicum virgatum, Sorghum bicolor, Zea mays) and Brachypodium distachyon to examine the diversity and evolution of SINE populations. We comparatively analyzed the structural features, distribution, evolutionary relation and abundance of 32 SINE families and subfamilies within grasses, comprising 11 052 individual copies. The investigation of activity profiles within the Poaceae provides insights into their species‐specific diversification and amplification. We found that Poaceae SINEs (PoaS) fall into two length categories: simple SINEs of up to 180 bp and dimeric SINEs larger than 240 bp. Detailed analysis at the nucleotide level revealed that multimerization of related and unrelated SINE copies is an important evolutionary mechanism of SINE formation. We conclude that PoaS families diversify by massive reshuffling between SINE families, likely caused by insertion of truncated copies, and provide a model for this evolutionary scenario. Twenty‐eight of 32 PoaS families and subfamilies show significant conservation, in particular either in the 5′ or 3′ regions, across Poaceae species and share large sequence stretches with one or more other PoaS families.  相似文献   

4.
Short interspersed nuclear elements (SINEs) are non‐autonomous non‐long terminal repeat retrotransposons which are widely distributed in eukaryotic organisms. While SINEs have been intensively studied in animals, only limited information is available about plant SINEs. We analysed 22 SINE families from seven genomes of the Amaranthaceae family and identified 34 806 SINEs, including 19 549 full‐length copies. With the focus on sugar beet (Beta vulgaris), we performed a comparative analysis of the diversity, genomic and chromosomal organization and the methylation of SINEs to provide a detailed insight into the evolution and age of Amaranthaceae SINEs. The lengths of consensus sequences of SINEs range from 113 nucleotides (nt) up to 224 nt. The SINEs show dispersed distribution on all chromosomes but were found with higher incidence in subterminal euchromatic chromosome regions. The methylation of SINEs is increased compared with their flanking regions, and the strongest effect is visible for cytosines in the CHH context, indicating an involvement of asymmetric methylation in the silencing of SINEs.  相似文献   

5.
The presence of repetitive elements can create serious problems for sequence analysis, especially in the case of homology searches in nucleotide sequence databases. Repetitive elements should be treated carefully by using special programs and databases. In this paper, various aspects of SINE (short interspersed repetitive element) identification, analysis and evolution are discussed.  相似文献   

6.
7.
Evolution of interspersed repetitive elements inGossypium (Malvaceae)   总被引:1,自引:0,他引:1  
Very little is known regarding how repetitive elements evolve inpolyploid organisms. Here we address this subject by fluorescent insitu hybridization (FISH) of 20 interspersed repetitive elements tometaphase chromosomes of the cotton AD-genome tetraploid Gossypiumhirsutum and its putative A- and D-genome diploid ancestors. Theseelements collectively represent an estimated 18% of the G.hirsutum genome, and constitute the majority of high-copyinterspersed repetitive elements in G. hirsutum. Seventeen ofthe elements yielded FISH signals on chromosomes of both G.hirsutum subgenomes, while three were A-subgenome specific. Hybridization of eight selected elements, two of which were A-subgenomespecific, to the A(2) genome of G. arboreum yielded asignal distribution that was similar to that of the G. hirsutumA-subgenome. However, when hybridized to the D(5) genome ofG. raimondii, the putative diploid ancestor of the G.hirsutum D-subgenome, none of the probes, including elements thatstrongly hybridized to both G. hirsutum subgenomes, yieldeddetectable signal. The results suggest that the majority, although notall, G. hirsutum interspersed repetitive elements haveundergone intergenomic concerted evolution following polyploidizationand that this has involved colonization of the D-subgenome byA-subgenome elements and/or replacement of D-subgenome elements byelements of the A-subgenometype.  相似文献   

8.
Repetitive sequences are ubiquitous components of eukaryotic genomes affecting genome size and evolution as well as gene regulation. Among them, short interspersed nuclear elements (SINEs) are non‐coding retrotransposons usually shorter than 1000 bp. They contain only few short conserved structural motifs, in particular an internal promoter derived from cellular RNAs and a mostly AT‐rich 3′ tail, whereas the remaining regions are highly variable. SINEs emerge and vanish during evolution, and often diversify into numerous families and subfamilies that are usually specific for only a limited number of species. In contrast, at the 3′ end of multiple plant SINEs we detected the highly conserved ‘Angio‐domain’. This 37 bp segment defines the Angio‐SINE superfamily, which encompasses 24 plant SINE families widely distributed across 13 orders within the plant kingdom. We retrieved 28 433 full‐length Angio‐SINE copies from genome assemblies of 46 plant species, frequently located in genes. Compensatory mutations in and adjacent to the Angio‐domain imply selective restraints maintaining its RNA structure. Angio‐SINE families share segmental sequence similarities, indicating a modular evolution with strong Angio‐domain preservation. We suggest that the conserved domain contributes to the evolutionary success of Angio‐SINEs through either structural interactions between SINE RNA and proteins increasing their transpositional efficiency, or by enhancing their accumulation in genes.  相似文献   

9.
The genetic polymorphism of an entire Bov-A2 element located in the second intron of the buffalo and bovine k-casein (CSN3) gene was investigated by amplification and sequencing of PCR products. Single nucleotide polymorphisms were detected. A PCR-RFLP method was developed to detect an A or G mutation at position 605 of bovine Bov-A2 element which creates a BfaI polymorphic site. The frequencies of the B allele, with the BfaI site, were for 0.275, 0.775, 0.750, 0.975, respectively, for Italian Holstein Friesian, Grey Alpine, Friuli Red Pied and Reggio bovine breeds. The mutation rate (substitutions and deletions/insertions per nucleotide site per year) was 2.5 x 10(-9) for Bov-A2 sequences in the second intron of CSN3. The comparison with other Bov-A2 elements suggests that this retroelement might be an important source of single nucleotide polymorphism for analysis of Bovidae genomes.  相似文献   

10.
A tRNAVal (GAC) gene is located in opposite orientation 552 nucleotides (nt) down-stream of the cytochrome oxidase subunit III (coxIII) gene in sunflower mitochondria. The comparison with the homologous chloroplast DNA revealed that the tRNAVal gene is part of a 417 nucleotides DNA insertion of chloroplast origin in the mitochondrial genome. No tRNAVal is encoded in monocot mitochondrial DNA (mtDNA), whereas two tRNAVal species are coded for by potato mtDNA. The mitochondrial genomes of different plant species thus seem to encode unique sets of tRNAs and must thus be competent in importing the missing differing sets of tRNAs.  相似文献   

11.
The results of the isolation of repetitive DNA elements in the genome of Dugesia etrusca, a species of the Dugesia gonocephala group, are reported. These sequences, about 1.4 kb long, represent only a part of longer interspersed genomic units (De1 family) and appear to be limited to the genome of some planarians of this group, as indicated by a Southern blot analysis performed in different species and populations. The genomic relationships among different species and populations of the D. gonocephala group are discussed in relation to the results obtained in the present work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The tRNAGly/glycyl-tRNA synthetase (GlyRS) system belongs to the so-called ‘class II aminoacyl-tRNA synthetase system’ in which tRNA identity elements are assured by rather few and simple determinants mostly located in the tRNA acceptor stem. Regarding evolutionary aspects, the tRNAGly/GlyRS system is a special case. There exist two different types of GlyRS, namely an archaebacterial/human type and a eubacterial type reflecting an evolutionary divergence within this system.Here we report the crystal structure of a human tRNAGly acceptor stem microhelix at 1.2 Å resolution. The local geometric parameters of the microhelix and the water network surrounding the RNA are presented. The structure complements the previously published Escherichia coli tRNAGly aminoacyl stem structure.  相似文献   

13.
14.
tRNA identity elements determine the correct aminoacylation by the cognate aminoacyl-tRNA synthetase. In class II aminoacyl tRNA synthetase systems, tRNA specificity is assured by rather few and simple recognition elements, mostly located in the acceptor stem of the tRNA. Here we present the crystal structure of an Escherichia coli tRNA(Gly) aminoacyl stem microhelix at 2.0 A resolution. The tRNA(Gly) microhelix crystallizes in the space group P3(2)21 with the cell constants a=b=35.35 A, c=130.82 A, gamma=120 degrees . The helical parameters, solvent molecules and a potential magnesium binding site are discussed.  相似文献   

15.
Short interspersed repetitive elements (SINEs) have been shown to be excellent markers of molecular phylogeny, since the integration of a SINE at a particular position in a genome can be considered an unambiguous derived homologous character. In the present study, we isolated a new family of SINEs from cichlids in Lake Tanganyika, whose speciation and diversification have been regarded as prime examples of explosive adaptive radiation. Members of this new SINE family, which we named the AFC family, are about 320 bp in length, and each has a tRNA- related region in its 5' region, as do most of the members of SINE families reported to date. A dot blot hybridization experiment showed that this family is distributed extensively in the genomes of cichlids in Africa, with estimated copy numbers of 2 x 10(3)-2 x 10(4) per haploid genome. Our investigations of the patterns of insertion of members of this family at six orthologous loci demonstrated clearly that four previously identified tribes, namely, the Lamprologini, Ectodini, Tropheini, and Perissodini, each form a monophyletic group. These results provide a basis for the elucidation of the phylogenetic framework of the cichlid fishes in Lake Tanganyika.   相似文献   

16.
tRNA identity elements assure the correct aminoacylation of tRNAs by the aminoacyl-tRNA synthetases with the cognate amino acid. The tRNAGly/glycyl-tRNA sythetase system is member of the so-called ‘class II system’ in which the tRNA determinants consist of rather simple elements. These are mostly located in the tRNA acceptor stem and in the glycine case additionally the discriminator base at position 73 is required. Within the glycine-tRNA synthetases, the archaebacterial/human and the eubacterial sytems differ with respect to their protein structures and the required tRNA identity elements, suggesting a unique evolutionary divergence.In this study, we present a comparison between the crystal structures of the eubacterial Escherichia coli and the human tRNAGly acceptor stem microhelices and their surrounding hydration patterns.  相似文献   

17.
We report here the characterization of a four-generation Han Chinese family with maternally transmitted diabetes mellitus. Six (two males/four females) of eight matrilineal relatives in this family exhibited diabetes. The age of onset in diabetes varies from 15 years to 33 years, with an average of 26 years. Two of affected matrilineal relatives also exhibited hearing impairment. Molecular analysis of mitochondrial DNA (mtDNA) showed the presence of heteroplasmic tRNA(Lue(UUR)) A3243G mutation, ranging from 35% to 58% of mutations in blood cells of matrilineal relatives. The levels of heteroplasmic A3243G mutation seem to be correlated with the severity and age-at-onset of diabetes in this family. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the A3243G mutation and 38 other variants belonging to the Eastern Asian haplogroup M7C. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, the A3243G mutation is the sole pathogenic mtDNA mutation associated with diabetes in this Chinese family.  相似文献   

18.
In a recent Perspective, Stahlhut et al. (2012) argued that potential Wolbachia-induced effects on inheritance patterns of mitochondrial DNA do not significantly affect DNA barcoding efforts. Since this hypothesis can be readily tested, we suggest to do so by including multiple, nuclear markers in DNA barcoding studies.  相似文献   

19.
Lake Malawi is home to more than 450 species of endemic cichlids, which provide a spectacular example of adaptive radiation. To clarify the phylogenetic relationships among these fish, we examined the presence and absence of SINEs (short interspersed repetitive elements) at orthologous loci. We identified six loci at which a SINE sequence had apparently been specifically inserted by retroposition in the common ancestor of all the investigated species of endemic cichlids in Lake Malawi. At another locus, unique sharing of a SINE sequence was evident among all the investigated species of endemic non-Mbuna cichlids with the exception of Rhamphochromis sp. The relationships were in good agreement with those deduced in previous studies with various different markers, demonstrating that the SINE method is useful for the elucidation of phylogenetic relationships among cichlids in Lake Malawi. We also characterized a locus that exhibited transspecies polymorphism with respect to the presence or absence of the SINE sequence among non-Mbuna species. This result suggests that incomplete lineage sorting and/or interspecific hybridization might have occurred or be occurring among the species in this group, which might potentially cause misinterpretation of phylogenetic data, in particular when a single-locus marker, such as a sequence in the mitochondrial DNA, is used for analysis. Received: 15 December 2000 / Accepted: 30 January 2001  相似文献   

20.
Bean (Phaseolus vulgaris cv. Saxa) chloroplasts contain two tRNAPhe species, namely tRNAPhe1 and tRNAPhe2. By sequence determination, we show that tRNAPhe2 is identical to the previously sequenced tRNAPhe1 except for two undermodified nucleotides. By reversed-phase chromatography analyses, we demonstrate that the relative amounts of these two chloroplast tRNAsPhe vary during leaf development: in etiolated leaves the undermodified tRNAPhe2 only represents 15% of total chloroplast tRNAPhe, during development and greening it increases to reach 60% in 8-day-old leaves, and it then decreases to 9% in senescing leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号