首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effects of metabolic and respiratory acidosis and alkalosis on cellular calcium metabolism were studied in rat kidney cells dispersed with collagenase. In both types of acidosis, the intracellular pH, total cell calcium, and the cell relative radioactivity after 60 min of labeling are significantly depressed. Kinetic analysis of45Ca desaturation curves shows that acidosis decreases all three cellular calcium pools and depresses calcium fluxes between the superficial and cytosolic pools and between the cytosolic and mitochondrial pools. In alkalosis the intracelluar pH, the total cell calcium, and the cell relative radioactivity are significantly increased. Kinetic studies show that in alkalosis, only the mitochondrial pool is consistently increased. Calcium exchange between the mitochondrial and cytosolic pool is increased in metabolic alkalosis only. These results suggest that hydrogen ion is an important modulator of calcium metabolism, and that the intracellular pH rather than extracellular pH is the critical factor in determining the calcium status of cells during altered acid-base conditions.  相似文献   

2.
Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage and cycling, we examined stands of known disturbance history in three landscapes of the southern Rocky Mountains. Our objectives were to assess the similarity between carbon stocks and fluxes for these three landscapes that differed in climate and disturbance history, characterize the relationship between observed tree age and time since disturbance and quantify the predictive capability of tree age or time since disturbance on carbon stocks and fluxes. Carbon pools and fluxes were remarkably similar across the three landscapes, despite differences in elevation, climate, species composition, disturbance history, and forest age. Observed tree age was a poor predictor of time since disturbance. Maximum tree age overestimated time since disturbance for young forests and underestimated it for older forests. Carbon pools and fluxes were related to both tree age and disturbance history, but the relationships differed between these two predictors and were generally less variable for pools than for fluxes. Using tree age in a relationship developed with time since disturbance or vice versa increases errors in estimates of carbon stocks or fluxes. Little change in most carbon stocks and fluxes occurs after the first 100 years following stand‐replacing disturbance, simplifying landscape scale estimates. We conclude that subalpine forests in the Central Rocky Mountains can be treated as a single forest type for the purpose of assessment and modeling of carbon, and that the critical period for change in carbon is < 100 years.  相似文献   

3.
Britto DT  Kronzucker HJ 《Planta》2001,213(2):175-181
Compartmental analysis with 13N was used to determine cytosolic nitrate (NO3-) pools, and their turnover rates, in roots of intact barley (Hordeum vulgare L. cv Klondike) seedlings. Influx, efflux, flux to the vacuole and assimilation, and flux to the xylem, varied as much as 300-fold over a wide range of external NO3- conditions. By contrast, the kinetic constant kc describing cytosolic NO3- turnover varied by less than 4% from a mean value of 0.0407 min(-1). Accordingly, cytosolic NO3- pools varied linearly with influx. A literature survey showed that kc constancy is observed with both NO3- and ammonium (NH4+) fluxes in many plant species, including H. vulgare, Arabidopsis thaliana, Picea glauca, and Oryza sativa. The regulatory system implied by this phenomenon is fundamentally different from that of potassium (K+) fluxes, in which cytosolic pool size is held constant while kc varies with external K+ concentrations. We further present data showing that barley plants, grown on one steady-state concentration of NH4+, restore kc within minutes of exposure to new, non-steady-state, NH4+ concentrations. We propose the existence of a high-fidelity mechanism governing the timing of cytosolic N turnover, and discuss its implications for attempts to improve plants biotechnologically.  相似文献   

4.
Intracellular zinc levels are homeostatically regulated and although most is bound, a pool of labile Zn(II) is present in cells. We show here that the zinc probe FluoZin-3 is useful to monitor zinc fluxes during fluorescent imaging of the trout hepatic cell line D11. Nuclei and bulk cytosol appeared to lack detectable labile zinc, while the punctuate staining pattern colocalized with a lysosome-specific probe. Applying extracellular zinc alone resulted in vesicular sequestration of the metal ion. Together with Na-pyrithione a delayed and toxic rise in cellular fluorescence was triggered. When using another ionophore, 4-Br A23187, a zinc buffering effect of the vesicular pools was evident. Secondly, N-ethylmaleimide induced a homogeneous fluorescence rise, which was strongly enhanced by addition of Zn-pyrithione and disappeared after TPEN washing. This suggests the involvement of thiol residues in controlling available cytosolic zinc. Our observations have implications for the interpretation of calculated intracellular Zn2+ concentrations.  相似文献   

5.
A major challenge to understanding low temperature calcium signatures in plants is defining how these signatures emerge from the interactions of different molecular components that are stored in different subcellular pools of a plant cell. Here we develop an integrative model that incorporates the interactions of Ca2?, H?, K?, Cl? and ATP in both cytosolic and vacuolar pools. Our analysis reveals how these four major ions along with ATP forms a complex network to relate the emergence of calcium signatures to other responses (e.g. pH response). Modelling results are in agreement with experimental observations for both cytosolic free calcium concentration ([Ca2?](c)) and pH. The model is further validated by experimentally measuring the response of [Ca2?](c) to six fluctuating (rather than constant) temperature profiles. We found that modelling results are in reasonable agreement with experimental observations, in particular, if the rate of reducing temperature is relatively high. In addition, we show that both calcium-induced calcium release (CICR) at the vacuolar membrane and transport of ions from the cytosolic pool to the vacuolar membrane play important roles in the interaction between cytosolic and vacuolar pools. In combination they control the amount and timing of calcium release from the vacuolar to cytosolic pool, shaping the specific calcium signature. The methodology and principles developed here establish an integrative view on the role of cytosolic and vacuolar pools in shaping calcium signatures in general, and they are universally applicable to study of the interactions of multiple subcellular pools.  相似文献   

6.
In this review, we will discuss several well-accepted signaling pathways toward calcium-mediated mechanisms of cystic expansion. The second messenger calcium ion has contributed to a vast diversity of signal transduction pathways. We will dissect calcium signaling as a possible mechanism that contributes to renal cyst formation. Because cytosolic calcium also regulates an array of signaling pathways, we will first discuss cilia-induced calcium fluxes, followed by Wnt signaling that has attributed to much-discussed planar cell polarity. We will then look at the relationship between cytosolic calcium and cAMP as one of the most important aspects of cyst progression. The signaling of cAMP on MAPK and mTOR will also be discussed. We infer that while cilia-induced calcium fluxes may be the initial signaling messenger for various cellular pathways, no single signaling mediator or pathway is implicated exclusively in the progression of the cystic expansion. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

7.
The interactions of terrestrial C pools and fluxes with spatial and temporal variation in climate are not well understood. We conducted this study in the southern Appalachian Mountains where complex topography provides variability in temperature, precipitation, and forest communities. In 1990, we established five large plots across an elevation gradient allowing us to study the regulation of C and N pools and cycling by temperature and water, in reference watersheds in Coweeta Hydrologic Laboratory, a USDA Forest Service Experimental Forest, in western NC, USA. Communities included mixed-oak pine, mixed-oak, cove hardwood, and northern hardwood. We examined 20-year changes in overstory productivity and biomass, leaf litterfall C and N fluxes, and total C and N pools in organic and surface mineral soil horizons, and coarse wood, and relationships with growing season soil temperature and precipitation. Productivity increased over time and with precipitation. Litterfall C and N flux increased over time and with increasing temperature and precipitation, respectively. Organic horizon C and N did not change over time and were not correlated to litterfall inputs. Mineral soil C and N did not change over time, and the negative effect of temperature on soil pools was evident across the gradient. Our data show that increasing temperature and variability in precipitation will result in altered aboveground productivity. Variation in surface soil C and N is related to topographic variation in temperature which is confounded with vegetation community. Data suggest that climatic changes will result in altered aboveground and soil C and N sequestration and fluxes.  相似文献   

8.
The role of both intracellular and extracellular Ca2+ pools in the expression of alpha-adrenergic-agonist-mediated responses was examined in perfused rat liver. Responses studied included glycogenolysis, respiration, lactate and pyruvate formation, ketone-body production, changes in the cytoplasmic and mitochondrial redox ratio and cellular K+ fluxes. Each of these was shown to be dependent on the mobilization of intracellular Ca2+ and can be grouped into one of two response types. Transient responses (ion fluxes and the redox ratios) are obligatorily dependent on the mobilization of intracellular Ca2+ and occur irrespective of the extracellular Ca2+ concentration. Sustained responses, on the other hand, initially require intracellular Ca2+ and, subsequently, extracellular Ca2+. The data indicate that alpha-adrenergic agonists mobilize extracellular Ca2+ as well as intracellular Ca2+ and that both pools are required for the full expression of hormone-induced responses in rat liver.  相似文献   

9.
The involvement of ion channels in B and T lymphocyte activation is supported by many reports of changes in ion fluxes and membrane potential after mitogen binding. Human T and B lymphocytes demonstrate an early and transient hyperpolarization after ligand binding. Inasmuch as the change in membrane potential is dependent on elevation of free cytosolic calcium, the hyperpolarization is presumably through opening of Ca(2+)-stimulated K+ channels. We have used charybdotoxin, a known inhibitor of Ca(2+)-dependent K+ channels, to study the role of these channels in lymphocyte activation and mitogenesis. We demonstrate that charybdotoxin inhibits the ligand-induced transient membrane hyperpolarization in B and T cells in a dose-dependent fashion, without affecting changes in cytosolic Ca2+. However, blockade of the Ca(2+)-activated K+ channel is not associated with changes in cell-cycle gene activation, IL-2 production, IL-2R expression or B and T cell mitogenesis. These results imply that membrane potential changes secondary to the ligand-dependent opening of Ca(2+)-activated K+ channels are not involved in B and T lymphocyte activation and mitogenesis.  相似文献   

10.
Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes   总被引:3,自引:1,他引:2  
Stable carbon isotopes are used extensively to examine physiological, ecological, and biogeochemical processes related to ecosystem, regional, and global carbon cycles and provide information at a variety of temporal and spatial scales. Much is known about the processes that regulate the carbon isotopic composition (delta(13)C) of leaf, plant, and ecosystem carbon pools and of photosynthetic and respiratory carbon dioxide (CO(2)) fluxes. In this review, systematic patterns and mechanisms underlying variation in delta(13)C of plant and ecosystem carbon pools and fluxes are described. We examine the hypothesis that the delta(13)C of leaf biomass can be used as a reference point for other carbon pools and fluxes, which differ from the leaf in delta(13)C in a systematic fashion. Plant organs are typically enriched in (13)C relative to leaves, and most ecosystem pools and respiratory fluxes are enriched relative to sun leaves of dominant plants, with the notable exception of root respiration. Analysis of the chemical and isotopic composition of leaves and leaf respiration suggests that growth respiration has the potential to contribute substantially to the observed offset between the delta(13)C values of ecosystem respiration and the bulk leaf. We discuss the implications of systematic variations in delta(13)C of ecosystem pools and CO(2) fluxes for studies of carbon cycling within ecosystems, as well as for studies that use the delta(13)C of atmospheric CO(2) to diagnose changes in the terrestrial biosphere over annual to millennial time scales.  相似文献   

11.
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.  相似文献   

12.
Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species compositions and land-use histories. Forests patch-cut for charcoal 60 years ago had few legumes, high litter C/N ratios, low soil nitrate and low N oxide fluxes. In contrast, successional forests from pastures abandoned several decades ago had high legume densities, low litter C/N ratios, high mean soil nitrate concentrations and high N oxide fluxes. These post-pasture forests were dominated by the naturalized legume Leuceana leucocephala, which was likely responsible for the rapid N cycling in those forests. We conclude that agriculturally induced successional pathways leading to dominance by a legume serve as a mechanism for increasing N oxide emissions from tropical regions. As expected for dry regions, nitric oxide dominated total N oxide emissions. Nitric oxide emissions increased with increasing soil moisture up to about 30% water-filled pore space then stabilized, while nitrous oxide emissions, albeit low, continued to increase with increasing soil wetness. Inorganic N pools and net N mineralization were greatest during peak rainfalls and at the post-agricultural site with the highest fluxes. Soil nitrate and the nitrate/ammonium ratio correlated positively with average N oxide fluxes. N oxide fluxes were negatively and exponentially related to litter C/N ratio for these dry forests and the relationship was upheld with the addition of data from seven wet forests in northeastern Puerto Rico. This finding suggests that species determination of litter C/N ratio may partly determine N oxide fluxes across widely differing tropical environments.  相似文献   

13.
More frequent and severe droughts are driving increased forest mortality around the globe. We urgently need to describe and predict how drought affects forest carbon cycling and identify thresholds of environmental stress that trigger ecosystem collapse. Quantifying the effects of drought at an ecosystem level is complex because dynamic climate–plant relationships can cause rapid and/or prolonged shifts in carbon balance. We employ the CARbon DAta MOdel fraMework (CARDAMOM) to investigate legacy effects of drought on forest carbon pools and fluxes. Our Bayesian model-data fusion approach uses tower observed meteorological forcing and carbon fluxes to determine the response and sensitivity of aboveground and belowground ecological processes associated with the 2012–2015 California drought. Our study area is a mid-montane mixed conifer forest in the Southern Sierras. CARDAMOM constrained with gross primary productivity (GPP) estimates covering 2011–2017 show a ~75% reduction in GPP, compared to negligible GPP change when constrained with 2011 only. Precipitation across 2012–2015 was 45% (474 mm) lower than the historical average and drove a cascading depletion in soil moisture and carbon pools (foliar, labile, roots, and litter). Adding 157 mm during an especially stressful year (2014, annual rainfall = 293 mm) led to a smaller depletion of water and carbon pools, steering the ecosystem away from a state of GPP tipping-point collapse to recovery. We present novel process-driven insights that demonstrate the sensitivity of GPP collapse to ecosystem foliar carbon and soil moisture states—showing that the full extent of GPP response takes several years to arise. Thus, long-term changes in soil moisture and carbon pools can provide a mechanistic link between drought and forest mortality. Our study provides an example for how key precipitation threshold ranges can influence forest productivity, making them useful for monitoring and predicting forest mortality events.  相似文献   

14.
The tetrameric ryanodine receptor calcium release channels (RyRs) are cation-selective channels that have pore architecture similar to that of K+ channels. We recently identified, in close proximity to the selectivity filter motif GGGIG, a conserved lumenal DE motif that has a critical role in RyR ion permeation and selectivity. Here, we substituted three aspartate residues (D4938, D4945, D4953) with asparagine and four glutamate residues (E4942, E4948, E4952, E4955) with glutamine hypothesized to line the cytosolic vestibule of the skeletal muscle RyR (RyR1). Mutant single channel properties were determined using the planar lipid bilayer method. Two mutants (D4938N, D4945N) showed a reduced K+ ion conductance, with D4938N also exhibiting a reduced selectivity for Ca2+ compared to K+. The cytosolic location of D4938 and D4945 was confirmed using the polycation neomycin. Both D4938N and D4945N exhibited an attenuated block by neomycin to a greater extent from the cytosolic than lumenal side. By comparison, charge neutralization of lumenal loop residues (D4899Q, E4900N) eliminated the block from the lumenal but not the cytosolic side. The results suggest that, in addition to negatively charged residues on the lumenal side, rings of four negative charges formed by D4938 and D4945 in the cytosolic vestibule determine RyR ion fluxes.  相似文献   

15.
Palytoxin is a marine toxin responsible for a fatal type of poisoning in humans named clupeotoxism, with symptoms such as neurologic disturbances. It is believed that it binds to the Na(+)/K(+)-ATPase from the extracellular side and modifies cytosolic ions; nevertheless, its effects on internal cell structures, such as the cytoskeleton, which might be affected by these initial events, have not been fully elucidated. Likewise, ostreocin-D, an analog of palytoxin, has been only recently found, and its action on excitable cells is therefore unknown. Therefore, our aim was to investigate the modifications of ion fluxes associated with palytoxin and ostreocin-D activities, and their effects on an essential cytoskeletal component, the actin system. We used human neuroblastoma cells and fluorescent dyes to detect changes in membrane potential, intracellular Ca(2+) concentration, cell detachment, and actin filaments. Fluorescence values were obtained with spectrofluorymetry, laser-scanning cytometry, and confocal microscopy; the last of these was also used for recording images. Palytoxin and ostreocin-D modified membrane permeability as a first step, triggering depolarization and increasing Ca(2+) influx. The substantial loss of filamentous actin, and the morphologic alterations elicited by both toxins, are possibly secondary to their action on ion channels. The decrease in polymerized actin seemed to be Ca(2+)-independent; however, this ion could be related to actin cytoskeletal organization. Palytoxin and ostreocin-D alter the ion fluxes, targeting pathways that involve the cytoskeletal dynamics of human excitable cells.  相似文献   

16.
Mitochondrial (mt) DNA depletion syndromes can arise from genetic deficiencies for enzymes of dNTP metabolism, operating either inside or outside mitochondria. MNGIE is caused by the deficiency of cytosolic thymidine phosphorylase that degrades thymidine and deoxyuridine. The extracellular fluid of the patients contains 10-20 microM deoxynucleosides leading to changes in dTTP that may disturb mtDNA replication. In earlier work, we suggested that mt dTTP originates from two distinct pathways: (i) the reduction of ribonucleotides in the cytosol (in cycling cells) and (ii) intra-mt salvage of thymidine (in quiescent cells). In MNGIE and most other mtDNA depletion syndromes, quiescent cells are affected. Here, we demonstrate in quiescent fibroblasts (i) the existence of small mt dNTP pools, each usually 3-4% of the corresponding cytosolic pool; (ii) the rapid metabolic equilibrium between mt and cytosolic pools; and (iii) the intra-mt synthesis and rapid turnover of dTTP in the absence of DNA replication. Between 0.1 and 10 microM extracellular thymidine, intracellular thymidine rapidly approaches the extracellular concentration. We mimic the conditions of MNGIE by maintaining quiescent fibroblasts in 10-40 microM thymidine and/or deoxyuridine. Despite a large increase in intracellular thymidine concentration, cytosolic and mt dTTP increase at most 4-fold, maintaining their concentration for 41 days. Other dNTPs are marginally affected. Deoxyuridine does not increase the normal dNTP pools but gives rise to a small dUTP and a large dUMP pool, both turning over rapidly. We discuss these results in relation to MNGIE.  相似文献   

17.
Carden DE  Felle HH 《Planta》2003,216(6):993-1002
Medicago sativa L. (alfalfa) root hairs respond to Nod factors [NodRm-IV(C16:2,S)] in a host-specific manner with depolarization and rapid ion fluxes. Protoplasts prepared from these cells using the cell wall-digesting enzymes pectolyase and cellulase do not, or to a rather small extent, respond to Nod factors. In an effort to understand this activity loss we analyzed the mode of action of both enzymes with respect to their effects on the root hairs as well as their interference with the Nod factor response. (i) In the presence of the enzymes, Nod factor at saturating concentrations neither depolarized the plasma membrane of root hairs nor caused ion fluxes. Even after removal of the enzymes, Nod factor responses were strongly refractory. (ii) After a lag-phase of 12-18 s, pectolyase depolarized the plasma membrane, alkalized the external space, acidified the cytosol and increased the cytosolic Ca(2+) activity. (iii) Cellulase, without a lag-phase, depolarized the plasma membrane, acidified the cytosol, but only marginally increased the cytosolic Ca(2+) activity. Unlike pectolyase, the cellulase response was only weakly refractory to a second addition. (iv) Neither enzyme increased the membrane conductance, but pectolyase inhibited the H(+)-pump. (v) Pectolyase shows all the signs of an elicitor, while cellulase yields a mixed response. (vi) Denatured enzymes yielded strong effects similar to those of untreated enzymes. We conclude that the effects shown do not originate from enzymatic activity, but from interactions of the proteins with cell wall or plasma membrane constituents. It is further concluded that these enzymes (pectolyase more so than cellulase) trigger defense-related signal pathways, which makes protoplasts prepared with such enzymes unsuitable for studies of symbiotic or defense-related signalling.  相似文献   

18.
Lijklema  Lambertus 《Hydrobiologia》1994,275(1):335-348
The transport and cycling of nutrients through the various pools in water, soil and sediment is controlling the long term and short term productivity of water bodies. An understanding of the size of these pools and the fluxes between them is essential for the assessment of the usefulness of management measures resulting in reduced external input and the anticipated resilience of the system towards changes in trophic character. Large pools, such as phosphorus in surficial sediments and nitrate in groundwater have a potential for prolonged stimulation of productivity. Diffuse sources, fluxes towards sinks, competition between biota and adsorbents for sparse nutrients, feedback mechanisms, non-linearities and shifts among prevailing processes are discussed.  相似文献   

19.
The purpose of this research was to analyse experimental data concerning cytosolic calcium concentration in view of the mechanisms involved in calcium fluxes in human platelets. The parameters of model curves are related to the properties of the entities responsible for control or maintenance of cytosolic calcium concentration. It has been shown that: (a) biphasicity of increase in cytosolic calcium concentration caused by inhibition of SERCAs either by TBHQ and TG or by TG alone is related to fast and slow discharge of acidic calcium stores and DTS; (b) biphasicity of decline in cytosolic calcium concentration after its rise caused by stimulation of platelets by the agonists is related to non-synchronous extrusion of calcium by PMCA and NCX; (c) NCX is active only in calcium containing medium: calcium ion(s) are necessary to be bound to the site(s) located on the medium-facing side of the (macro)molecule; (d) PMCA is likely to be activated either by binding calcium ion(s) to the site(s) located on its cytosol-facing side or by unbinding identical ion(s) from the site(s) on its medium-facing side.  相似文献   

20.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号