首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A brief overview of the progress made during the past approximately 40 years on the development of methods for in vitro production of cat embryos and intra- and interspecies embryo transfer is described. The presentation is focused primarily on research done over the past 30 years at the Cincinnati Zoo (1980–1995) and at the Audubon Nature Institute, New Orleans (1996–present) beginning with original studies on determining optimal doses of porcine FSH for ovarian stimulation and uterine embryo recovery, cryopreservation, and transfer. A key early finding was the ability of cats to respond to multiple gonadotropin (porcine FSH) treatments by repeated stimulation of follicular development. With a ≥6-month interval between FSH treatments, over the past 15 years (1998–2013), we have done 1603 laparoscopic oocyte retrievals on 337 cats and recovered >38,000 mature oocytes (mean = 24.1 per laparoscopic oocyte retrieval). The limited information available on in vivo blastocyst development in the cat during the latter portion of the preimplantation period (approximately Days 8 to 12 after coitum or approximately Days 7 to 11 after ovulation) was assembled for the purpose of comparing and contrasting it with the growth, expansion, and zona functioning of in vitro-derived blastocysts. Also, results of transferring morulae and/or blastocysts into synchronous recipients are described to emphasize evidence that appears to allude to an essential role for an intact zona pellucida in successful implantation and subsequent development in the cat. Until 2003, our in vitro-derived embryos were transferred into the uterine horns of recipients to determine the feasibility of producing offspring from such primary methods as IVF, intracytoplasmic sperm injection, SCNT, and embryo cryopreservation. With the exception of SCNT embryos, pregnancy rates were satisfactory, but embryo survival rates were not. Subsequently, after finding that SCNT embryo survival rate could be improved using laparoscopic transfer of early cleavage stage embryos into the oviduct, we applied the technique to embryos derived using IVF with sex-sorted sperm, oocyte vitrification, and embryo cryopreservation. Overall, a pregnancy rate of 67% (14/21) has resulted. Most recently, with the oviductal embryo transfer technique, two litters of Black-Footed cat kittens have been born from intra- and interspecies transfer of cryopreserved embryos.  相似文献   

2.
Studies in somatic cells have shown that glucocorticoids such as dexamethasone (DEX) may trigger or prevent apoptosis depending on the cell type in culture. Because the dysregulation of apoptosis may lower in vitro embryo production efficiency, we sought to investigate the effects of supplementing IVC medium with DEX (0.1 μg/mL) on embryo morphology, development kinetics, and apoptosis rates of in vitro–produced bovine preimplantation embryos. Embryo morphology was graded on Day 7, and development rates were assessed on Days 4 and 7 of IVC. Apoptosis was evaluated via annexin/propidium iodide staining under fluorescence microscopy where a cell labeled with annexin, propidium iodide, or both would be considered apoptotic. An embryo was counted in the apoptosis rates, if it displayed at least one such labeled cell. Although DEX supplementation did not reduce apoptosis rates, it had a positive impact on developmental kinetics and cell number both on Days 4 and 7 of embryo culture. Presumably, such effect resulted from increased cell proliferation rather than a direct inhibition of apoptosis. Further studies may evaluate the mechanisms by which glucocorticoids may affect embryo development, as DEX supplementation could become a tool to improve in vitro embryo yield in mammalian species.  相似文献   

3.
Beyond the potential use of in vitro production of embryos (IVP) in breeding schemes, embryos are also required for the establishment of new biotechnologies such as cloning and transgenesis. Additionally, the knowledge of oocyte and embryo physiology acquired through IVP techniques may stimulate the further development of other techniques such as marker assisted and genomic selection of preimplantation embryos, and also benefit assisted procreation in human beings. Efficient in vitro embryo production is currently a major objective for livestock industries, including small ruminants. The heterogeneity of oocytes collected from growing follicles by laparoscopic ovum pick up or in ovaries of slaughtered females, remains an enormous challenge for IVM success, and still limits the rate of embryo development. In addition, the lower quality of the IVP embryos, compared with their in vivo–derived counterparts, translates into poor cryosurvival, which restricts the wider use of this promising technology. Therefore, many studies have been reported in an attempt to determine the most suitable conditions for IVM, IVF, and in vitro development to maximize embryo production rate and quality. This review aims to present the current panorama of IVP production in small ruminants, describing important steps for its success, reporting the recent advances and also the main obstacles identified for its improvement and dissemination.  相似文献   

4.
The bovine blastocyst hatches 8 to 9 days after fertilization, and this is followed by several days of preimplantation development during which the embryo transforms from a spherical over an ovoid to an elongated shape. As the spherical embryo enlarges, the cells of the inner cell mass differentiate into the hypoblast and epiblast, which remain surrounded by the trophectoderm. The formation of the hypoblast epithelium is also accompanied by a change in the fluid within the embryo, i.e., the blastocoel fluid gradually alters to become the primitive yolk sac (YS) fluid. Our previous research describes the protein composition of human and bovine blastocoel fluid, which is surrounded by the trophectoderm and undifferentiated cells of the inner cell mass. In this study, we further examine the changes in the protein composition in both the primitive YS fluid and the embryonic cells during early and slightly later stage cell differentiation in the developing bovine embryo. In vitro–produced Day 6 embryos were transferred into a recipient heifer and after 7 days of further in vivo culture, ovoid and elongated Day 13 embryos were recovered by flushing both uterine horns after slaughter. The primitive YS fluid and cellular components were isolated from 12 ovoid and three elongated embryos and using nano-high-performance liquid chromatography, tandem mass spectrometry, and isobaric tag for relative and absolute quantitation proteomic analysis, a total of 9652 unique proteins were identified. We performed GO term and keyword analyses of differentially expressed proteins in the fluid and the cells of the two embryonic stages, along with a discussion of the biological perspectives of our data with relation to morphogenesis and embryo-maternal communication. Our study thereby provides a considerable contribution to the current knowledge of bovine preimplantation development.  相似文献   

5.
The in vitro production of porcine embryos has presented numerous challenges to researchers over the past four decades. Some of the problems encountered were specific to porcine gametes and embryos and needed the concerted efforts of many to overcome. Gradually, porcine embryo in vitro production systems became more reliable and acceptable rates of blastocyst formation were achieved. Despite the significant improvements, the problem of polyspermic fertilization has still not been adequately resolved and the embryo in vitro culture conditions are still considered to be suboptimal. Whereas early studies focused on increasing our understanding of the reproductive processes involved, the technology evolved to the point where in vitro-matured oocytes and in vitro-produced embryos could be used as research material for developing associated reproductive technologies, such as SCNT and embryo cryopreservation. Today, the in vitro procedures used to mature oocytes and culture embryos are integral to the production of transgenic pigs by SCNT. This review discusses the major achievements, advances, and knowledge gained from porcine embryo in vitro production studies and highlights the future research perspectives of this important technology.  相似文献   

6.
Ghrelin is a gastric peptide having regulatory role in the reproductive system functionality, acting mainly at central level. Because the expression of ghrelin system (ghrelin and its receptor) has been detected in the bovine ovary, the objectives of the present study were to investigate whether ghrelin can affect the developmental potential of in vitro-produced embryos, and to test their quality in terms of relative abundance of various genes related to metabolism, apoptosis and oxidation. In the first experiment, in vitro-produced zygotes were cultured in the absence (control [C]) and in the presence of three concentrations of acylated ghrelin (200 pg/mL [Ghr200], 800 pg/mL [Ghr800]; and 2000 pg/mL [Ghr2000]); blastocyst formation rates were examined on Days 7, 8, and 9. In the second experiment, only the 800 pg/mL dose of ghrelin was used. Zygotes were produced as in experiment 1 and 24 hours post insemination they were divided into 4 groups; in two groups (C; without ghrelin; Ghr800 with ghrelin), embryos were cultured without medium replacement; in the remaining two groups (Control N and GhrN), the culture medium was daily renewed. A pool of Day-7 blastocysts were snap frozen for relative mRNA abundance of various genes related to metabolism, oxidation, implantation, and apoptosis. In experiment 3, embryos were produced as in experiment 2, but in the absence of serum (semi-defined culture medium). In experiment 1, no differences were detected between C, Ghr200, and Ghr2000, although fewer blastocysts were produced in group Ghr800 compared with C. In experiment 2, the lowest blastocysts yield was found in Ghr800, whereas daily renewal of ghrelin (Ghr800N) resulted to increased blastocysts formation rate, which on Day 7 was the highest among groups (P < 0.05). In experiment 3, ghrelin significantly suppressed blastocysts yield. Significant differences were detected in various relative mRNA abundance, giving an overall final notion that embryos produced in the presence of ghrelin were of better quality than controls. Our results imply a specific role of ghrelin in early embryonic development; however, the specific mode of its action needs further investigation.  相似文献   

7.
After cryopreservation, embryos become sensitive to the oxidative stress, resulting in lipid peroxidation, membrane injury, and structural destruction. The present study aimed to assess the effect of increasing concentration of melatonin during postwarming culture on embryo's ability to restore its functions after cryopreservation. In vitro–produced blastocysts were vitrified, warmed, and cultured in vitro in TCM 199 with 5 different supplementations: control (CTR): 10% fetal calf serum; bovine serum albumin (BSA): 0.04% (wt/vol) BSA; and MEL−3, MEL−6, MEL−9: BSA plus melatonin 10−3, 10−6, and 10−9 M. The medium with the highest melatonin concentration had the highest trolox equivalent antioxidant capacity, whose values were comparable with those determined in plasma sampled from adult ewes (8.7 ± 2.4 mM). The other media had lower trolox equivalent antioxidant capacity values (P < 0.01), below the range of the plasma. At the same time, embryos cultured with the highest melatonin concentration reported a lower in vitro viability, as evaluated by lower re-expansion and hatching rates, and lower total cell number compared with the other groups (P < 0.05). Their metabolic status was also affected, as evidenced by higher oxidative and apoptotic index and lower ATP concentration. The beneficial effects of melatonin on embryo development during postwarming culture were observed only at low concentration (10−9 M). These results suggest that melatonin at high concentration may exert some degree of toxic activity on pre-implantation embryos. Thus, the dose at which the embryos are exposed is pivotal to obtain the desiderate effect.  相似文献   

8.
The aim of the present study was to examine the effects of CUDC-101, a novel histone deacetylase inhibitor, on the in vitro development and expression of the epigenetic marker histone H3 at lysine 9 (AcH3K9) in pig SCNT embryos. We found that treatment with 1 μmol/L CUDC-101 for 24 hours significantly improved the development of pig SCNT embryos. Compared with the control group, the blastocyst rate was higher (18.5% vs. 10.3%; P < 0.05). To assess in vivo developmental potency, CUDC-101–treated SCNT embryos were transferred into two surrogate mothers, resulting in one pregnancy with six fetuses. We then investigated the acetylation level of histone H3K9 in SCNT embryos treated with CUDC-101 and compared them only against untreated embryos. The acetylation level of control SCNT embryos was lower than that of CUDC-101–treated embryos at pseudo-pronuclear stages, and immunofluorescent signal for H3K9ac in CUDC-101–treated embryos in a pattern similar to that of control group. In conclusion, we demonstrated that CUDC-101 can significantly improve in vitro and in vivo developmental competence and enhance the nuclear reprogramming of pig SCNT embryos.  相似文献   

9.
It is well known that IVM oocytes show a decreased potential for fertility and development compared with in vivo–matured oocytes. In this study, we added reduced glutathione (GSH) to the fertilization medium during IVF to investigate its effect on the fertility and early embryo development of IVM oocytes. The fertilization rate for IVM oocytes and fresh sperm increased with the addition of GSH (0, 1.0, and 2.0 mM: 51%, 76%, and 70%). Moreover, the addition of GSH to the fertilization medium also improved the developmental potential compared with the control sample (0 mM). In addition, we performed IVF using IVM oocytes and frozen/thawed sperm that had been cryopreserved in a mouse bank. Results indicated a marked increase in the fertilization rate when 1.0 mM GSH was added to the fertilization medium compared with when no GSM was used (0.0 mM GSH: 2% (3/195); 1.0 mM GSH: 33% (156/468)). Furthermore, the fertilization rate improved dramatically via zona drilling using laser equipment (52%: 267/516), whereas normal offspring were obtainsed after transferring embryos created via IVF using IVM oocytes and frozen/thawed sperm. This is the first report in which offspring have been obtained via IVF using IVM oocytes and frozen/thawed sperm.  相似文献   

10.
Coxiella burnetii, an obligate intracellular bacterium of worldwide distribution, is responsible for Q fever. Domestic ruminants are the main source of infection for humans. The objectives of this study were to determine (1) whether C. burnetii would adhere to the intact zona pellucida (ZP-intact) of early in vitro–produced bovine embryos; (2) whether the bacteria would adhere to or infect the embryos (ZP-free) after in vitro infection; and (3) the efficacy of the International Embryo Transfer Society (IETS) washing protocol. One hundred and sixty, eight- to 16-cell bovine embryos produced in vitro, were randomly divided into 16 batches of 10 embryos. Twelve batches (eight ZP-intact and four ZP-free) were incubated in a medium containing C. burnetii CbB1 (Infectiologie Animale et Santé Publique, Institut National de Recherche Agronomique Tours, France). After 18 hours of incubation at 37 °C and 5% CO2 in air, the embryos were washed in 10 successive baths of a PBS and 5% fetal calf serum solution in accordance with the IETS guidelines. In parallel, four batches (two ZP-intact and two ZP-free) were subjected to similar procedures but without exposure to C. burnetii to act as controls. Ten washing fluids from each batch were collected and centrifuged for 1 hour at 13,000× g. The embryos and wash pellets were tested using conventional polymerase chain reaction. C. burnetii DNA was found in all ZP-intact and ZP-Free embryos after 10 successive washes. It was also detected in the first four washing fluids for ZP-intact embryos and in the 10th wash fluid for two of the four batches of ZP-free embryos. In contrast, none of the embryos or their washing fluids in the control batches were DNA positive. These results demonstrate that Cburnetii adheres to and/or penetrates the early embryonic cells and the ZP of in vitro bovine embryos after in vitro infection, and that the standard washing protocol recommended by the IETS for bovine embryos, failed to remove it. The persistence of these bacteria after washing makes the embryo a potential means of transmission of the bacterium during embryo transfer from infected donor cows to healthy recipients and/or their offspring. Further studies are required to investigate whether enzymatic and/or antibiotic treatment of bovine embryos infected by C. burnetii would eliminate the bacteria from the ZP and to verify if similarly results are obtained with in vivo–derived embryos.  相似文献   

11.
Despite recent efforts to improve in vitro maturation (IVM) systems for porcine oocytes, developmental competence of in vitro-matured oocytes is still suboptimal compared with those matured in vivo. In this study, we compared oocytes obtained from large (≥8 mm; LF) and medium (3–7 mm; MF) sized follicles in terms of nuclear maturation, intracellular glutathione and reactive oxygen species levels, gene expression, and embryo developmental competence after IVM. In the control group, cumulus-oocyte complexes (COCs) were aspirated from MF and matured for 22 hours with hormones and subsequently matured for 18 to 20 hours without hormones at 39 °C, 5% CO2in vitro. In the LF group, COCs were obtained from follicles larger than 8 mm and were subjected to IVM for only 18 hours. The ovaries have LF were averagely obtained with 1.7% per day during 2012 and it was significantly higher in the winter season. The results of the nuclear stage assessment of the COCs from the LFs are as follows: before IVM (0 hours); germinal vesicle stage (15.2%), metaphase I (MI) stage (55.4%), anaphase and telophase I stages (15.8%), and metaphase II (MII) stage (13.6%). After 6 hours IVM; germinal vesicle (4.2%), MI (43.6%), anaphase and telophase I (9.4%), and MII (42.8%). After 18-hour IVM; MI (9.7%) and MII (90.3%). Oocytes from LF showed a significant (P < 0.001) increase in intracellular glutathione (1.41 vs. 1.00) and decrease in reactive oxygen species (0.8 vs. 1.0) levels compared with the control. The cumulus cells derived from LFs showed lower (P < 0.1) mRNA expression of COX-2 and TNFAIP6, and higher (P < 0.1) mRNA expression of PCNA and Nrf2 compared with the control group-derived cumulus cells. After parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (SCNT) using matured oocytes from LFs, the embryo development was significantly improved (greater blastocyst formation rates and total cell numbers in blastocysts) compared with the control group. In conclusion, oocytes from LFs require only 18 hours to complete oocyte maturation in vitro and their developmental competence is significantly greater than those obtained from MFs. Although their numbers are limited, oocytes from LFs might offer an alternative source for the efficient production of transgenic pigs using SCNT.  相似文献   

12.
The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality.  相似文献   

13.
14.
Primordial oocytes are a potential resource for medical and zoological application, but those of large animals have not yet been reported to show efficient embryonic development. In the present study, we established a pig model for production of blastocysts from primordial oocytes that had been grafted into nude mice and matured in vitro, in combination with fusion of cytoplasmic fragments. Neonatal porcine ovaries in which most follicles are at the primordial stage were minced and grafted into nude mice (Crlj:CD1-Foxn1nu). About 60 days after detection of vaginal opening, the mice were given 62.5 U/mL porcine FSH for 2 weeks by infusion to enhance follicular development. Developmentally competent oocytes collected from porcine ovaries (conventional oocytes) were matured in vitro and subjected to serial centrifugation to prepare cytoplasmic fragments without a metaphase plate (cytoplasts). Three cytoplasts were fused by electrostimulation to an oocyte retrieved from a host mouse (xenogeneic oocyte) and matured in vitro. Then these fused oocytes were fertilized and subsequently cultured in vitro. No blastocysts were generated from xenogeneic oocytes without fusion of cytoplasm. When xenogeneic oocytes had been fused with three cytoplasts, the blastocyst rate increased significantly to 14.3%, comparable to that for untreated conventional oocytes (20.0%). The numbers of cells in blastocysts for these fused oocytes (37.2 cells/blastocyst) were not significantly different from those for conventional oocytes (25.4 cells/blastocyst). Our findings show that it is possible to use primordial oocytes of large mammals in combination with xenografting of ovarian tissue and also ooplasmic fusion.  相似文献   

15.
The detection of significant bacterial loads of Coxiella burnetii in flushing media and tissue samples from the genital tracts of nonpregnant goats represents a risk factor for in utero infection and transmission during embryo transfer. The aim of this study was to investigate (1) whether cells of early goat embryos isolated from in vivo–fertilized goats interact with C. burnetii in vitro, (2) whether the embryonic zona pellucida (ZP) protects early embryo cells from infection, and (3) the efficacy of the International Embryo Transfer Society (IETS) washing protocol for bovine embryos. The study was performed in triple replicate: 12 donor goats, certified negative by ELISA and polymerase chain reaction, were synchronized, superovulated, and subsequently inseminated by Q fever-negative males. Sixty-eight embryos were collected 4 days later by laparotomy. Two-thirds of the resulting ZP-intact and ZP-free 8- to 16-cell embryos (9-9, 11-11, and 4-4 in replicates 1, 2, and 3, respectively) were placed in 1 mL minimum essential medium containing 109C. burnetii CBC1 (IASP, INRA Tours). After overnight incubation at 37 °C and 5% CO2, the embryos were washed according to the IETS procedure. In parallel, the remaining third ZP-intact and ZP-free uninfected embryos (3-3, 5-5, and 2-2 in replicates 1, 2, and 3, respectively) were subjected to the same procedures, but without C. burnetii, thus serving as controls. The 10 washing fluids for all batches of each replicate were collected and centrifuged for 1 hour at 13,000 × g. The washed embryos and pellets were tested by polymerase chain reaction. Coxiella burnetii DNA was found in all batches of ZP-intact and ZP-free infected embryos after 10 successive washes. It was also detected in the first five washing fluids for ZP-intact embryos and in the first eight washing fluids for ZP-free embryos. None of the control batches (embryos and washing fluids) were found to contain bacterial DNA. These results clearly indicate that caprine early embryonic cells are susceptible to infection by C. burnetii. The bacterium shows a strong tendency to adhere to the ZP after in vitro infection, and the washing procedure recommended by the IETS for bovine embryos failed to remove it. The persistence of these bacteria makes the embryo a potential means of transmission to recipient goats. Further studies are needed to investigate whether the enzymatic treatment of caprine embryos infected by C. burnetii would eliminate the bacteria from the ZP.  相似文献   

16.
The production of embryos with a preselected sex sperm is important in the livestock industry. In this study, we examined the efficiency of producing female embryos by intracytoplasmic sperm injection (ICSI) with flow cytometry sorted (ssICSI) and unsorted (usICSI) bovine sperm, and their developmental competence in vitro. For comparison, bovine embryos were also produced by in vitro fertilization (IVF) with sorted (ssIVF) and unsorted (usIVF) bovine sperm. The semen used in this study was from a bull selected for its high fertility and blastocyst developmental competence among four bulls. We first examined and compared pronuclear (PN) formation and cleavage rates of the produced embryos among the treatment groups. Our results demonstrated that PN formation rates (judged by two pronucleus [2PN]) and cleavage rates in ssIVF group (23.1% and 43.6%) were lower than those in the usIVF (71.1% and 71.6%), usICSI (73.1% and 92.8%) and ssICSI (75% and 79.1%) groups, respectively (P < 0.05). Moreover, the blastocyst formation rate in the ssIVF group was less than those in the usIVF, usICSI, and ssICSI groups (2.7% vs. 30.2%, 28.7% and 24.7%, respectively; P < 0.05). Importantly, we reported that the blastocyst formation rate in the ssICSI group was similar to that in the usICSI group, which indicated that ICSI can rescue the damage introduced to sperm by flow cytometry–mediated sex-sorting. Of note, we achieved a blastocyst formation rate in the ssICSI group to be comparable with the usIVF group. We then examined embryo quality by counting the number of normal and apoptotic cells in blastocysts. It was found that, despite the fact that blastocyst formation rate in the ssIVF group was significantly lower than those in the usIVF, usICSI and ssICSI groups, there was no difference in total and apoptotic cell numbers among these groups (P > 0.05). Finally, karyotyping analysis demonstrated that the proportion of female embryos in the ssICSI and ssIVF groups was 100%, whereas it was 58.8% and 57.8% in the usIVF and usICSI groups, respectively. In conclusion, ICSI with flow cytometry sorted bovine sperm provides an alternative approach to produce embryos with predetermined sex.  相似文献   

17.
The present study evaluated the efficacy of superstimulation with p-FSH (Folltropin) before the ovum pick-up (OPU) on IVP in lactating and nonlactating Holstein donors. A total of 30 Holstein cows (15 lactating and 15 nonlactating) were blocked by lactation status to one of two groups (control or p-FSH), in a cross-over design. On a random day of the estrous cycle, all cows received an intravaginal progesterone device and 2.0 mg IM of estradiol benzoate (Day 0). Cows in the control group received no further treatment, whereas cows in the p-FSH group received a total dosage of 200 mg of p-FSH on Days 4 and 5 in four decreasing doses 12 hours apart (57, 57, 43, and 43 mg). On Day 7, the progesterone device was removed, and OPU was conducted in both groups (40 hours after the last p-FSH injection in the p-FSH–treated group). There was no difference between groups (P = 0.92) in the numbers of follicles that were aspirated per OPU session (17.2 ± 1.3 vs. 17.1 ± 1.1 in control and p-FSH-treated cows, respectively); however, p-FSH-treated cows had a higher (P < 0.001) percentage of medium-sized follicles (6–10 mm) at the time of the OPU (55.1%; 285/517) than control cows (20.8%; 107/514). Although recovery rate was lower (60.0%, 310/517 vs. 69.8%, 359/514; P = 0.002), p-FSH-treated cows had a higher blastocyst production rate (34.5%, 89/258 vs. 19.8%, 55/278; P < 0.001) and more transferable embryos per OPU session were produced in the p-FSH group (3.0 ± 0.5 vs. 1.8 ± 0.4; P = 0.02). Regardless of treatment, non-lactating cows had a higher blastocyst rate (41.9%, 106/253 vs. 13.4%, 38/283; P = 0.001) and produced more transferable embryos per OPU session (3.5 ± 0.5 vs. 1.3 ± 0.3; P = 0.003) than lactating cows. Thus, superstimulation of Holstein donors with p-FSH before OPU increased the efficiency of IVP. In addition, non-lactating donors had higher percentage of in vitro blastocyst development and produced more embryos per OPU session than lactating cows.  相似文献   

18.
Vitrification is considered a viable method for cryopreservation of ovarian tissue and selection of methods that minimize follicular damage is important. The objective of the present study was to evaluate the effects of two vitrification methods on ovarian tissue morphology, preantral follicles survival rate during in vitro culture, and relative expression of genes associated with oocyte maturation and cumulus expansion. Ovaries from 12-day-old mice were vitrified in media containing ethylene glycol, dimethyl sulphoxide, and sucrose. Before plunging in liquid nitrogen, ovaries were first loaded into an acupuncture needle (needle immersion vitrification [NIV]) or placed on a cold steel surface for 10 to 20 seconds (solid surface vitrification [SSV]). The integrity of the ovarian tissue was well-preserved after vitrification and was similar controls. Follicle viability in the SSV group was lower (P < 0.05) than in the control group after 6 days of culture and the NIV group after 10 day of culture. Follicle viability after 12 day of culture was 92.8%, 82.1%, and 58.4% in control, NIV, and SSV groups, respectively. Bmp15, Gdf9, BmprII, Alk6, Alk5, Has2, and Ptgs2 gene expression patterns were similar among groups. However, the level of gene expression in the vitrification groups during Days 6 to 10 were higher compared with the control group. In conclusion, ovarian tissue morphologic integrity was well-preserved, regardless of the vitrification method. Vitrification using the needle immersion method resulted in greater follicular survival after 12 day of culture than the SSV method. Gene expression patterns during culture did not seem to explain the reduced survival rate observed in the solid surface group.  相似文献   

19.
Current quality control of inactivated animal vaccines still focuses on the potency of final products in a batch-wise manner. Animal welfare concerns as well as scientific considerations have led to the ‘3Rs-concept’ that comprises the refinement of animal procedures, the reduction of animal numbers, and the replacement of animal models. Although the 3Rs-concept has been widely accepted as a fundamental principle, the number of approved alternatives for in vivo tests is still limited. To promote further progress, the international scientific workshop ‘Potency Testing of Veterinary Vaccines: The Way from in vivo to in vitro’ was held at the Paul-Ehrlich-Institut in Langen, Germany, on 01-03 December 2010. More than 130 participants from industry, academia and regulatory authorities discussed the current state of the 3Rs-concept, examples of its successful implementation as well as still existing hurdles. Special emphasis was laid on the ‘consistency approach’ that aims to ensure relevant quality attributes of vaccine batches by in vitro analyses during production rather than by in vivo potency tests on the final product. This report provides an overview of the insights gained, including the recommendations produced at the end of the workshop.  相似文献   

20.
Cooling sperm to and equilibrating the sperm at 5 °C require the most time in any sperm cryopreservation protocol. Reducing the time required for these phases would simplify sperm freezing protocols and allow greater number of ejaculates to be processed and frozen in a given time. This study determined how holding rabbit sperm at 5 °C for different lengths of time (0, 10, 15, 20, 30, or 45 minutes) affected the quality of rabbit sperm, measured by in vitro assays, and if reducing the cooling time to only 10 minutes affected the fertilizing ability of the sperm. Reducing the time sperm were held at 5 °C to 10 minutes did not affect the in vitro quality of the sperm (percent motile and with intact plasma membranes), although eliminating the cooling phase completely (directly freezing the sperm from room temperature) decreased in vitro assessed sperm quality (P < 0.01). However, reducing the time sperm were held at 5 °C, from 45 to 10 minutes, negatively affected the fertilizing ability of sperm in vivo (P < 0.05). In conclusion, completely eliminating cooling rabbit sperm to 5 °C before freezing is detrimental for rabbit sperm cryosurvival, and although shortening the time sperm are held at 5 °C to 10 minutes does not reduce in vitro sperm quality, it does reduce the fertility of rabbit sperm. Therefore, the length of time rabbit sperm equilibrate at 5 °C is crucial to the fertilizing ability of rabbit sperm and must be longer than 10 minutes. Currently, it is not known if holding rabbit sperm at 5 °C for less than 45 minutes will affect sperm fertilizing ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号