首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The objective of this study was to investigate the effects of eCG and temporary calf removal (TCR) associated with progesterone (P4) treatment on the dynamics of follicular growth, CL size, and P4 concentrations in cyclic (n = 36) and anestrous (n = 30) Nelore cows. Cyclic (C) and anestrous (A) cows were divided into three groups. The control group received 2 mg of estradiol benzoate via intramuscular (IM) injection and an intravaginal device containing 1.9 g of P4 on Day 0. On Day 8, the device was removed, and the animals received 12.5 mg of dinoprost tromethamine IM. After 24 hours, the animals received 1 mg of estradiol benzoate IM. In the eCG group, cows received the same treatment described for the control group but also received 400 UI of eCG at the time of device removal. In the TCR group, calves were separated from the cows for 56 hours after device removal. Ultrasound exams were performed every 24 hours after device removal until the time of ovulation and 12 days after ovulation to measure the size of the CL. On the same day as the CL measurement, blood was collected to determine the plasma P4 level. Statistical analyses were performed with a significance level of P ≤ 0.05. In cyclic cows, the presence of the CL at the beginning of protocol resulted in a smaller follicle diameter at the time of device removal (7.4 ± 0.3 mm in cows with CL vs. 8.9 ± 0.4 mm in cows without CL; P = 0.03). All cows ovulated within 72 hours after device removal. Anestrous cows treated with eCG or TCR showed follicle diameter at fixed-timed artificial insemination (A-eCG 10.2 ± 0.3 and A-TCR 10.3 ± 0.5 mm) and follicular growth rate (A-eCG 1.5 ± 0.2 and A-TCR 1.3 ± 0.1 mm/day) similar to cyclic cows (C-eCG 11.0 ± 0.6 and C-TCR 12.0 ± 0.5 mm) and (C-eCG 1.4 ± 0.2 and C-TCR 1.6 ± 0.2 mm/day, respectively; P ≤ 0.05). Despite the similarities in CL size, the average P4 concentration was higher in the A-TCR (9.6 ± 1.4 ng/mL) than in the A-control (4.0 ± 1.0 ng/mL) and C-TCR (4.4 ± 1.0 ng/mL) groups (P < 0.05). From these results, we conclude that eCG treatment and TCR improved the fertility of anestrous cows by providing follicular growth rates and size of dominant follicles similar to cyclic cows. Additionally, TCR increases the plasma concentrations of P4 in anestrous cows.  相似文献   

2.
The effects of estradiol benzoate (EB) and estradiol cypionate (EC) on induction of ovulation after a synchronized LH surge and on fertility of Bos indicus females submitted to timed AI (TAI) were evaluated. In Experiment 1, ovariectomized Nelore heifers were used to evaluate the effect of EB (n = 5) and EC (n = 5) on the circulating LH profile. The LH surge timing (19.6 and 50.5 h; P = 0.001), magnitude (20.5 and 9.4 ng/mL; P = 0.005), duration (8.6 and 16.5 h; P = 0.001), and area under the LH curve (158.6 and 339.4 ng/mL; P = 0.01) differed between the EB and EC treatments, respectively. In Experiment 2 (follicular responses; n = 60) and 3 (pregnancy per AI; P/AI; n = 953) suckled Bos indicus beef cows submitted to an estradiol/progesterone-based synchronization protocol were assigned to receive one of two treatments to induce synchronized ovulation: 1 mg of EB im 24 h after progesterone (P4) device removal or 1 mg of EC im at P4 device removal. There was no difference (P > 0.05) between EB and EC treatments on follicular responses (maximum diameter of the ovulatory follicle, 13.1 vs. 13.9 mm; interval from progesterone device removal to ovulation, 70.2 vs. 68.5 h; and ovulation rate, 77.8 vs. 82.8%, respectively). In addition, P/AI was similar (P < 0.22) between the cows treated with EB (57.5%; 277/482) and EC (61.8%; 291/471). In conclusion, despite pharmacologic differences, both esters of estradiol administered either at P4 device removal (EC) or 24 h later (EB) were effective in inducing an LH surge which resulted in synchronized ovulations and similar P/AI in suckled Bos indicus beef cows submitted to TAI.  相似文献   

3.
Two experiments evaluated the effects of timing of the induction of ovulation in superstimulated lactating Holstein donor cows that were fixed-time artificially inseminated. Secondary objectives were to evaluate the effects of the timing of progesterone (P4) device removal (Experiment 1) or the addition of a second norgestomet implant (Experiment 2) during superstimulation. In Experiment 1, 12 cows were allocated to one of four treatment groups with the timing of P4 device removal (24 or 36 h) and pLH treatment (48 or 60 h), after the first PGF as main factors, in a Latin Square (cross-over) design. There was an interaction (P = 0.03) between time of P4 device removal and time of pLH treatment. Mean (± SEM) numbers of transferable embryos were higher when the P4 device was removed at 36 h and pLH was administered at 60 h after the first PGF (P36LH60 =6.3 ± 1.4) compared to other treatments (P24LH60 =3.7 ± 1.1; P24LH48 =2.4 ± 0.8; or P36LH48 =2.2 ± 0.7). In Experiment 2, 40 cows were randomly allocated into one of four treatments with the number of norgestomet implants (one or two) and the time of induction of ovulation with GnRH relative to the first PGF (48 vs. 60 h) as main effects. The mean number of transferable embryos was higher (P = 0.02) when GnRH was administered at 60 h (4.2 ± 1.3) compared to at 48 h (2.7 ± 0.8), and the number of freezable embryos was increased (P = 0.01) in cows receiving two (3.0 ± 1.0) rather than one norgestomet implant (1.5 ± 0.5). In summary, embryo production in lactating Holstein cows was increased when the ovulatory stimulus (pLH or GnRH) was given 60 h after the first PGF, particularly when the P4 device was removed 36 h after the first PGF and when two norgestomet ear implants were used during the superstimulation protocol.  相似文献   

4.
The objective of this study was to determine whether plasma concentrations of progesterone (P4) from a controlled internal drug releasing (CIDR) device (approximately 2 ng/ml) were adequate to sustain a persistent first wave dominant follicle (FWDF) in low body condition (LBC, body condition score [BCS] 1 = lean, 5 = fat [2.3 +/- 0.72, n = 4]) compared with high body condition (HBC, BCS = 4.4 +/- 0.12, n = 4) nonlactating dairy cows. On Day 7 of the estrous cycle (Day 0 = estrus), cows were treated with PGF2 alpha (25 mg i.m. Lutalyse, P.M., and Day 8 A.M.) and a used CIDR device containing P4 (1.2 g) was inserted into the vagina until ovulation or Day 16. Plasma was collected for P4 and estradiol (E2) analyses from Day 5 to Day 18 (or ovulation), and ovarian follicles were monitored daily by ultrasonography. Mean concentrations of plasma P4 were greater in HBC than LBC cows between Days 5 and 7 (4.6 > 3.4 +/- 0.37 ng/ml; P < 0.04). All LBC cows maintained the first wave dominant follicle and ovulated after removal of the CIDR device (18.3 +/- 0.3 d, n = 3; Cow 4 lost the CIDR device on Day 11 and ovulated on Day 15), whereas in the HBC cows ovulation occurred during the period of CIDR exposure (11.3 +/- 0.3 d; n = 3; a fourth cow developed a luteinized first wave dominant follicle that did not ovulate during the experimental protocol on Day 19). Mean day of estrus was 17 +/- 0.4 for LBC (n = 3) and 10 +/- 0.4 for HBC (n = 3) cows. Sustained concentrations of plasma E2 (12.9 +/- 2.8 pg/ml; Days 8 to 17) in LBC cows reflected presence of an active persistent first wave dominant follicle. The differential effect of BCS on concentrations of plasma P4 (y = ng/ml) was reflected by the difference (P < 0.01) in regressions: yLBC = 19.9 - 3.49x + 0.166x2 vs yHBC = 37.3 - 7.04x + 0.340x2 (x = day of cycle, Days 7 to 12). Although P4 concentration was greater for HBC cows prior to Day 8, a greater clearance of plasma P4 released from the CIDR device in the absence of a CL altered follicular dynamics, leading to premature ovulation in the HBC cows. A greater basal concentration of P4 was sustained in LBC cows that permitted maintenance of a persistent first wave dominant follicle.  相似文献   

5.
The objective of this study was to investigate the effect of supplementing previously treated anovulatory anestrous (AA) dairy cows with progesterone delivered intra-vaginally for 7 days, commencing 4 or 5 days after insemination, on first-service conception rate. A clinical trial, involving 990 AA dairy cows in 14 dairy herds, was conducted during the 2002/2003 breeding season. On Day -8, all cows were treated with a progesterone-containing intravaginal device (Cue-Mate). The devices were removed on Day -2; on Day -1, all cows were given 1mg of estradiol benzoate im. Cows in the control group (n = 499) received no further treatments. Cows in the treatment group (n = 491) that had been inseminated on Day 0 or 1 had a new device inserted (on Day 4 or 5), with removal of the device after 7 days. First-service conception rates for the control and treatment groups were not different (35.0% versus 36.7% respectively; P = 0.41). Furthermore, there was no difference in conception rates between cows that had devices inserted on Day 4 or 5 (31.3% versus 37.2% respectively; P = 0.45). In conclusion, supplementation of previously treated AA dairy cows with an intravaginal progesterone-releasing device for 7 days (commencing 4 or 5 days after insemination) did not significantly improve first-service conception rate.  相似文献   

6.
The objective was to evaluate the effects of plasma progesterone (P4) concentrations and exogenous eCG on ovulation and pregnancy rates of pubertal Nellore heifers in fixed-time artificial insemination (FTAI) protocols. In Experiment 1 (Exp. 1), on Day 0 (7 d after ovulation), heifers (n = 15) were given 2 mg of estradiol benzoate (EB) im and randomly allocated to receive: an intravaginal progesterone-releasing device containing 0.558 g of P4 (group 0.5G, n = 4); an intravaginal device containing 1 g of P4 (group 1G, n = 4); 0.558 g of P4 and PGF (PGF; 150 μg d-cloprostenol, group 0.5G/PGF, n = 4); or 1 g of P4 and PGF (group 1G/PGF, n = 3). On Day 8, PGF was given to all heifers and intravaginal devices removed; 24 h later (Day 9), all heifers were given 1 mg EB im. In Exp. 2, pubertal Nellore heifers (n = 292) were treated as in Exp. 1, with FTAI on Day 10 (30 to 36 h after EB). In Exp. 3, pubertal heifers (n = 459) received the treatments described for groups 0.5G/PGF and 1G/PGF and were also given 300 IU of eCG im (groups 0.5G/PGF/eCG and 1G/PGF/eCG) at device removal (Day 8). In Exp. 1, plasma P4 concentrations were significantly higher in heifers that received 1.0 vs 0.588 g P4, and were significantly lower in heifers that received PGF on Day 0. In Exp. 2 and 3, there were no significant differences among groups in rates of ovulation (65-77%) or pregnancy (Exp. 2: 26-33%; Exp. 3: 39-43%). In Exp. 3, diameter of the dominant ovarian follicle on Day 9 was larger in heifers given 0.558 g vs 1.0 g P4 (10.3 ± 0.2 vs 9.3 ± 0.2 mm; P < 0.01). In conclusion, lesser amounts of P4 in the intravaginal device or PGF on Day 0 decreased plasma P4 from Days 1 to 8 and increased diameter of the dominant follicle on Day 9. However, neither of these nor 300 IU of eCG on Day 8 significantly increased rates of ovulation or pregnancy.  相似文献   

7.
This study evaluated fertility in swamp buffalo after synchronization of ovulation combined with fixed time artificial insemination. At the start of the study, designated day 0, from a group of 98 female Thai swamp buffalo, 55 buffalo (heifers n° = 20 and cows n° = 35) were selected to be synchronized with GnRH (Day 0) followed by PGF2alpha (Day 7) and a second treatment with GnRH (Day 9). All buffalo were inseminated at two fixed times 12 h and 24 h after the second injection of GnRH (Ovsynch+TAI group); a second group of 43 buffalo (heifers n° = 19 and cows n° = 24) were not treated and were artificially inseminated (AI) at natural estrus (AI group). Blood samples were taken 22 days after insemination to evaluate progesterone plasma levels. In the Ovsynch+TAI group, overall conception rate (CR; i.e. the number of cows with progesterone >4.0 ng/ml on day 22 after AI divided by the number of animals inseminated), was 38.1% and overall pregnancy rate (PR; i.e. the number of cows that were pregnant at day 50-60 after insemination divided by the number of animals inseminated), was 32.7%. In the AI group overall CR and PR was 34.9%.Within the Ovsynch+TAI group, CR and PR were reduced (P < 0.05) in heifers compared with cows (CR 15.0% vs. 51.4% for heifers and cows, respectively; PR 15.0% vs. 42.9% for heifers and cows, respectively). Within the AI group the efficacy of treatment was similar between heifers and cows (CR and PR 31.6% for heifers and 37.5% for cows).In conclusion, this study indicates that in swamp buffalo it is possible to synchronize ovulation and use timed artificial insemination with the Ovsynch+TAI protocol.  相似文献   

8.
We hypothesized that administration of hCG to recipients at embryo transfer (ET) would induce accessory CL, increase serum progesterone concentrations, and reduce early embryonic loss (as measured by increased transfer pregnancy rates). At three locations, purebred and crossbred Angus, Simmental, and Hereford recipients (n = 719) were assigned alternately to receive i.m. 1,000 IU hCG or 1 mL saline (control) at ET. Fresh or frozen-thawed embryos were transferred to recipients with a palpable CL on Days 5.5 to 8.5 (median = Day 7) of the cycle (Locations 1 and 2), or on Day 7 after timed ovulation (Location 3). Pregnancy diagnoses (transrectal ultrasonography) were done 28 to 39 d (median = 35 d) and reconfirmed 58 to 77 d (median = 67 d) post-estrus. At Location 1 (n = 108), ovaries were examined at pregnancy diagnosis to enumerate CL. More (P < 0.001) pregnant hCG-treated cows (69.0%) had multiple CL than pregnant controls (0%). Serum progesterone (ng/mL) determined at Locations 1 and 2 (n = 471) at both pregnancy diagnoses in pregnant cows was greater (P ≤ 0.05) after hCG treatment than in controls (first: 8.1 ± 0.9 vs 6.1 ± 0.8; second: 8.8 ± 0.9 vs 6.6 ± 0.7), respectively. Unadjusted pregnancy rates at the first diagnosis were 61.8 and 53.9% for hCG and controls. At the second diagnosis, pregnancy rates were 58.6 and 51.3%, respectively. Treatment (P = 0.026), embryo type (P = 0.016), and BCS (P = 0.074) affected transfer pregnancy rates. Based on odds ratios, greater pregnancy rates occurred in recipients receiving hCG, a fresh embryo (66.3 vs 55.5%), and having BCS >5 (62.3 vs 55.3%). We concluded that giving hCG at ET increased incidence of accessory CL, serum progesterone in pregnant recipients, and transfer pregnancy rates. Furthermore, we inferred that increased progesterone resulting from hCG-induced ovulation reduced early embryonic losses after transfer of embryos to recipients.  相似文献   

9.
The objective of Experiment 1 was to compare the effects of estradiol benzoate (EB) given 0 or 24h after the end of a progestagen treatment on ovulation and CL formation in anestrous cows. Twenty cows were treated with an intravaginal sponge containing 250 mg of medroxiprogesterone acetate (MPA). At sponge insertion, each cow received 3 mg EB and 10 mg MPA im. At device removal, cows received 0.7 mg EB either at that time (EB0) or 24h later (EB24). Ultrasound examinations and blood sampling to determine plasma progesterone concentrations were performed to detect ovulation and CL formation. Ovulation occurred in 77.8 and 81.8% cows in the EB0 and EB24 groups, respectively. Diameter of the ovulatory follicle (EB0 = 10.9 +/- 0.5mm; EB24 = 12.1 +/- 0.8 mm; P = 0.26) and the interval from sponge removal to ovulation (median = 3 days; P = 0.64) did not differ between treatments. Among the cows that ovulated (n = 16), short-lived CL were present in 2/7 and 2/9 cows in the EB0 and EB24 groups, respectively. Plasma progesterone concentrations and CL area did not differ between treatments (P > 0.05). In Experiment 2, cows were treated with the same protocol as in Experiment 1, but at sponge withdrawal all cows received 250 microg cloprostenol and timed artificial insemination (TAI) was performed 48 h after sponge removal. In Replicate 1 (n = 204 multiparous cows), pregnancy rates were 45.0 and 47.5% for EB0 and EB24, respectively (P > 0.05). In Replicate 2 (n = 69 primiparous cows) pregnancy rate did not differ between EB0 and EB24 (51.4% versus 52.9%). In conclusion, EB given 0 or 24h after the end of a progestagen treatment had the same effect on ovulation rate, time to ovulation, diameter of the ovulatory follicle, incidence of short-lived CL, luteal tissue area, and plasma progesterone concentrations of normal lifespan CL, and pregnancy rate after TAI in suckled beef cows.  相似文献   

10.
We hypothesized that reducing the size of the ovulatory follicle using aspiration and GnRH would reduce the size of the resulting CL, reduce circulating progesterone concentrations, and alter conception rates. Lactating dairy cows (n=52) had synchronized ovulation and AI by treating with GnRH and PGF2alpha as follows: Day -9, GnRH (100 microg); Day -2, PGF2alpha (25 mg); Day 0, GnRH (100 microg); Day 1, AI. Treated cows (aspirated group; n=29) had all follicles > 4 mm in diameter aspirated on Days -5 or -6 in order to start a new follicular wave. Control cows (nonaspirated group: n=23) had no follicle aspiration. The size of follicles and CL were monitored by ultrasonography. The synchronized ovulation rate (ovulation rate to second GnRH injection: 42/52=80.8%) and double ovulation rate of synchronized cows (6/42=14.3%) did not differ (P > 0.05) between groups. Aspiration reduced the size of the ovulatory follicle (P < 0.0001; 11.5 +/- 0.2 vs 14.5 +/- 0.4 mm), and serum estradiol concentrations at second GnRH treatment (P < 0.0002; 2.5 +/- 0.4 vs 5.7 +/- 0.6 pg/mL). The volume of CL was less (P < 0.05) for aspirated than nonaspirated cows on Day 7 (2,862 +/- 228 vs 5,363 +/- 342 mm3) or Day 14 (4,652 +/- 283 vs 6,526 +/- 373 mm3). Similarly, serum progesterone concentrations were less on Day 7 (P < 0.05) and Day 14 (P < 0.10) for aspirated cows. Pregnancy rate per AI for synchronized cows was lower (P < 0.05) for aspirated (3/21=14.3%) than nonaspirated (10/21=47.6%) cows. In conclusion, ovulation of smaller follicles produced lowered fertility possibly because development of smaller CL decreased circulating progesterone concentrations.  相似文献   

11.
Two experiments were designed to evaluate the effects of treatments with low versus high serum progesterone (P4) concentrations on factors associated with pregnancy success in postpubertal Nellore heifers submitted to either conventional or fixed timed artificial insemination (FTAI). Heifers were synchronized with a new controlled internal drug release device (CIDR; 1.9 g of P4 [CIDR1]) or a CIDR previously used for 18 days (CIDR3) plus 2 mg of estradiol (E2) benzoate on Day 0 and 12.5 mg of prostaglandin F2α on Day 7. In experiment 1 (n = 723), CIDR were removed on Day 7 or 9 and heifers were inseminated after estrus detection. In experiment 2 (n = 1083), CIDR were all removed on Day 9 and FTAI was performed either 48 hours later in heifers that received E2 cypionate (ECP) on Day 9 (0.5 mg; E48) or 54 or 72 hours later in conjunction with administration of GnRH (100 μg; G54 or G72). Synchronization with CIDR1 resulted in greater serum P4 concentrations and smaller follicle diameters on Days 7 and 9 in both experiments. In experiment 1, treatment with CIDR for 9 days decreased the interval from CIDR removal to estrus (Day 7, 3.76 ± 0.08 days vs. Day 9, 2.90 ± 0.07; P < 0.01) and improved conception (Day 7, 57.1% vs. Day 9, 65.8%; P = 0.05) and pregnancy rates (Day 7, 37.6% vs. Day 9, 45.3%; P = 0.04). In experiment 2, treatment with ECP improved (P < 0.01) the proportion of heifers in estrus (E48, 40.9%a; G54, 17.1%c; and G72, 32.0%b), but the pregnancy rate was not affected (P = 0.64) by treatments (E48, 38.8%; G54, 35.5%; G72, 37.5%). Synchronization with CIDR3 increased follicle diameter at FTAI (CIDR1, 11.07 ± 0.10 vs. CIDR3, 11.61 ± 0.10 mm; P < 0.01), ovulation rate (CIDR1, 82.8% vs. CIDR3, 88.0%; P < 0.01) and did not affect conception (CIDR1, 42.2 vs. CIDR3, 45.1%; P = 0.38) or pregnancy rates (CIDR1, 34.7 vs. CIDR3, 39.4%; P = 0.11). In conclusion, length of treatment with P4 affected the fertility of heifers bred based on estrus detection. When the heifers were submitted to FTAI protocol, follicle diameter at FTAI (≤10.7 mm, 23.6%; 10.8–15.7 mm, 51.5%; ≥15.8 mm, 30.0%; P < 0.01) was the main factor that affected conception and pregnancy rates.  相似文献   

12.
The aim of this study was to compare two protocols for estrus synchronization in suckled beef cows over a 2 years period. The population studied consisted of 172 Charolais and 168 Limousin cows from 12 and 14 beef herds, respectively. In each herd, cows were allotted to groups according to parity, body condition score and calving difficulty. Cows in Group 1 (n=174) received PRID on Day-8 with estradiol benzoate (10mg, vaginal capsule), dinoprost on Day-4 (25mg i.m.), eCG on Day 2 (500 IU i.m.). The PRID was removed on Day-2 and cows were inseminated on Day 0, 56 h after PRID was removed. Cows in Group 2 (n=166) received GnRH on Day-10 (100 microg i.m.), dinoprost on Day-3 (25mg i.m.) and GnRH on Day-1 (100 microg i.m.), and were inseminated on Day 0, 16-24h after the last GnRH treatment. Plasma progesterone concentrations were measured to determine cyclicity prior to treatment (Days-20 and -10), to confirm the occurrence of ovulation (Days 0 and 10) and to determine the apparent early pregnancy rate (Days 0, 10 and 24). Pregnancy diagnosis was performed by ultrasonography between Days 35 and 45. The effects of various factors on ovulation, apparent early pregnancy and pregnancy rates were studied using logistic mixed models. There was no significant difference between Groups 1 and 2, respectively, for the cyclicity rate before treatment (80.5% versus 80.1%), for apparent pregnancy rate on Day 24 (62.1% versus 54.8%, P=0.09) and for pregnancy rate on Days 35-45 (53.8% versus 46.3%, P=0.16). Ovulation rate was higher (P<0.01) in Group 1 (90.8%) than in Group 2 (77.1%) and was affected by cyclicity prior to treatment in Group 2 but not in Group 1 (Group 1: 88.2% in anestrous cows versus 91.4% in cyclic cows; Group 2: 45.5% in anestrous cows versus 85.0% in cyclic cows, P interaction=0.05). Apparent pregnancy rates on Day 24 were influenced by the year of study (52.4% versus 68.8%, OR=2.12, P<0.01) and by the cyclicity before treatment (anestrous cows 46.3% versus cyclic cows 61.5%, OR=1.86, P<0.05). Pregnancy rates at 35-45 days were influenced by the year of study (44.2% versus 59.8%, OR=1.92, P<0.01). In conclusion, although pregnancy rates were similar for the two treatments, the combination of GnRH+PGF2alpha+GnRH in suckled beef cows induced a lower rate of ovulation than treatment with PRID+PGF2alpha, particularly in anestrous cows.  相似文献   

13.
The objective of this study was to investigate the effect of time of first postpartum ovulation after calving on uterine involution in dairy cows with and without uterine puerperal disease. Transvaginal follicular puncture (FP) of follicles >6 mm suppressed ovulation and development of a CL until Day 42 after calving. Fifty-three lactating Holstein Friesian cows (3.4 ± 1.2 years old, parity 2.5 ± 1.0 [median ± mean absolute deviation]) were divided into groups on the basis of the presence (UD+) or absence (UD−) of uterine disease and whether FP was carried out (FP+) or not (FP−). Uterine disease was defined as the occurrence of retained fetal membranes and/or metritis. This resulted in the following groups: UD−FP− (n = 15), UD−FP+ (n = 13), UD+FP− (n = 13), and UD+FP+ (n = 12). A general examination, vaginoscopy, transrectal palpation, and transrectal B-mode sonography of the reproductive organs were conducted on Days 8, 11, 18, and 25 and then every 10 days until Day 65 after calving. After hormonal synchronization of ovulation (cloprostenol between Days 55 and 60 postpartum and GnRH 2 days later), cows were inseminated in the next spontaneous estrus. On average, the cows ovulated on Day 21.0 ± 6.0 (UD−FP−), 50.0 ± 4.0 (UD−FP+), 16.0 ± 3.0 (UD+FP−), and 48.0 ± 2.0 (UD+FP+) postpartum. Calving-to-conception interval and first-service conception rates were not affected by FP (P > 0.05). Healthy cows with FP had smaller (P < 0.05) uterine horn and cervical diameters assessed sonographically than cows without FP. FP reduced the prevalence of purulent vaginal discharge and uterine size assessed transrectally in UD+ cows (P < 0.05). The results showed that suppression of an early ovulation by transvaginal FP improved uterine involution in cows with and without uterine disease.  相似文献   

14.
The aim of the present study was to evaluate the effects of a single treatment with FSH on diameter of the largest follicle and on conception rates of suckled Bos indicus beef cows submitted to timed artificial insemination (TAI). Four hundred fifty-six suckled anestrous Nelore beef cows at 30-60 days postpartum were assigned to treatments. At the first day of the estrous synchronization protocol (Day 0), all cows received a progesterone-releasing intravaginal device plus 2mg of estradiol benzoate. On Day 8, cows were assigned to blocks according to the diameter of the largest follicle and then allocated to one of three treatment groups (Control, FSH, or eCG) within each block. Simultaneously to progesterone device withdrawal on Day 8, cows in the eCG treatment group (n=150) received 300 IU of eCG and cows in FSH treatment group (n=153) received 10mg of FSH, and Control cows (n=153) did not receive any additional treatment. Additional treatments with 150 μg of cloprostenol and 1mg of estradiol cypionate (EC) were also administered concurrently to progesterone device removal in all cows on Day 8. Two days later (D10), TAI and ovarian ultrasonic examinations to evaluate follicle size were performed in all cows. On Day 12, a subset of cows (n=389) were submitted a second ultrasonic exam to confirm ovulation. Final follicular growth (mm/day) was less (P=0.006) in both Control (0.95±0.11) and in FSH-treated cows (0.90±0.10) than in eCG-treated cows (1.40±0.13). Interestingly, there was a treatment-by-BCS interaction in ovulation results (P=0.03), in which, eCG treatment increased percentage of cows having ovulations with a lesser BCS. Similarly, there was a treatment-by-BCS interaction for conception (P=0.04), where the eCG treatment increased fertility in cows with a lesser BCS. In conclusion, FSH failed to stimulate final follicular growth, ovulation, and conception rate in sucked-anestrous beef cows submitted to TAI as effectively as eCG. However, physiological effects of eCG seem to be more evident in cows with a lesser BCS.  相似文献   

15.
The development and application of an algorithm to assess the ability of an infrared thermography (IRT) device to predict cows in estrus and about to ovulate was investigated. Twenty cows were synchronized using a controlled internal drug release and PGF2α. Vulval and muzzle temperatures were measured every 12 hours from controlled internal drug release insertion to 32 hours after PGF2α treatment and then every 4 hours until ovulation occurred or until 128 hours after PGF2α treatment (whichever occurred first). Thermal images obtained with a FLIR T620 series infrared camera were analyzed using ThermaCAM Researcher Professional 2.9 software. Cows were also monitored for behavioral signs of estrus and color changes of an Estrotect applied to the tail head of each cow 36 hours after PGF2α treatment. Algorithms were developed by adjusting body surface temperature of individual animals for ambient temperature and humidity during each observation period, and were expressed as a deviation from the baseline temperature. Of the 20 cows enrolled in this study, 12 (60%) ovulated. An IRT estrus alert was defined using different thresholds (D = 1 °C, 1.25 °C, and 1.5 °C). Sensitivity and specificity to predict estrus depended upon the chosen threshold level. At a threshold D = 1 °C, the highest sensitivity (92%; n = 11) and the lowest specificity (29%) and positive predictive value (64%) were observed. Conversely, D = 1.5 °C resulted in sensitivity of 75%, specificity of 57%, and positive predictive value of 69%. The mean ± standard deviation intervals between onset and the end of IRT estrus alert to ovulation were 30.7 ± 8.2 and 13.3 ± 7.7 hours, respectively. Ovulation occurred 24 to 47 hours after the onset of the IRT estrus alert for eight out of the 11 ovulated cows (73%). Although the sensitivity of the IRT alert was greater than visual observation (67%) and Estrotect activation (67%), the specificity and positive predictive value were lower than these two aids (i.e., the IRT overpredicted the incidence of ovulation). Results presented indicate that IRT shows some potential as an estrus detection aid; however, further studies investigating the potential to improve the specificity and capturing data throughout entire 21-day reproductive cycles would be worthwhile.  相似文献   

16.
The objectives of this study were to evaluate the effect using two doses of progesterone (P4) releasing devices in two different programs on reproductive performance of anestrous dairy cows. Cows (n = 1555) not detected in estrus by 10 d before the planned start of the seasonal breeding program and in which no CL was palpable were treated with an intravaginal P4-releasing device ('Single'; approximately 1.56 g of P4) or a modified device with triple the normal P4 dose ('Triple'; approximately 4.7 g of P4). The devices were in place for either 6 d ('Short') or 8 d ('Long'), with 1mg estradiol benzoate (EB) given 24 h after device removal. The 'Long' program also included treatment with 2 mg EB at device insertion. The Long program resulted in a higher first service conception rate (RR = 1.18 (95% CI = 1.03-1.33); P = 0.02), but had no effect on the 28-d, 56-d or final pregnancy rate compared to the Short program. There were no effects of dose of P4 on any outcome. In conclusion, the Long compared to the Short program, but not the dose of P4, improved first service conception rates in anestrous cows.  相似文献   

17.
Poor estrus expression and anestrus decrease the reproductive efficiency of buffaloes. The objective of this study was to determine whether the addition of equine chorionic gonadotropin (eCG) to an estrous synchronization protocol and timed insemination could improve ovulation and pregnancy rates of anestrous buffalo cows under tropical conditions. The study population comprised 65 lactating Murrah buffalo cows which were assigned to CIDR (n = 33) or CIDR + eCG (n = 32) treatment groups. Cows in the CIDR group were fitted for 8 d with a controlled intravaginal drug release (CIDR) device containing 1.38 g progesterone, received GnRH (10 μg i.m.) on D 0, PGF (750 μg i.m.) on D 7, and GnRH (10 μg i.m.) on D 9; whereas cows in the CIDR + eCG group received the same treatment plus eCG (500 IU, i.m.) at the time of PGF treatment. All cows were inseminated 16-20 h after the second GnRH treatment. Blood samples were obtained 10 d before the start of synchronization treatment (Day -10) and at the onset of treatment (Day 0). Cows with plasma progesterone concentrations <1 ng/mL recorded in both samples (Low-Low levels of P4) were classified as non-cyclic cows. Similarly, when either one or both of the sample pair contained concentrations of serum progesterone ≥1 ng/mL (High-High, Low-High, or High-Low levels of P4), the buffaloes were classified as cyclic cows. Ovulation rate, defined as the number of buffaloes with at least one corpus luteum 10 days after insemination, was significantly higher (P = 0.018) in the CIDR + eCG (84.4%) cows than in the CIDR cows (57.6%). Pregnancy rate was numerically lower in CIDR (27.3%) than CIDR + eCG (40.6%) cows, though differences were not significant (P = 0.25). Pregnancy rates for CIDR + eCG cows were similar to that of cows inseminated after natural estrus (40.9%; 29/71). In the non-cyclic animals, higher ovulation rates (P = 0.026) were recorded for the CIDR + eCG (81%) than for the CIDR cows (47.4%). Our results indicate that the addition of eCG to a progesterone-based estrous synchronization regimen substantially improves the ovulation rate in non-cyclic buffaloes. When this treatment is followed by timed AI, pregnancy rates achieved in anestrous buffaloes, whether cyclic and non-cyclic, may approach the rates observed in cows inseminated at natural estrus.  相似文献   

18.
The objectives of Experiment 1 were to determine a dose of eCG that would increase total luteal volume and plasma progesterone (P4) concentration on estrous cycle Day 7 in cows. The objectives of Experiment 2 were to determine the effects of treating embryo recipient lactating Holstein cows with eCG on pregnancy per embryo transfer (P/ET). In Experiment 1, lactating dairy cows at 63 ± 3 d postpartum (DIM) received no treatment (control, n = 10), or 600 (eCG6, n = 19), or 800 (eCG8, n = 19) IU of eCG 2 d after the start of the ovulation-synchronization protocol, Day -8 (Day -10 GnRH, Day -3 PGF, Day 0 GnRH). Blood was sampled on Days -10, -8, -3, 0, 7, and 14 for P4 concentration. Ovaries were examined by ultrasound on Days -10, -3, 0, and 7. In Experiment 2, lactating dairy cows were paired according to parity and previous insemination (0 or > 1 insemination) and assigned to receive 800 IU of eCG (eCG8, n = 152) 2 d after the start of the ovulation-synchronization protocol (Day -10 GnRH, Day -3 PGF, Day 0 GnRH) or to receive no treatment (control, n = 162). Blood was sampled on Days -10, -3, 0, 7, and 14 for determination of P4 concentration. Ovaries were examined by ultrasound on Days -10, -3, and 7, and cows with a CL > 20 mm in diameter on Day 7 received an embryo. In Experiment 1, P4 concentration on Day 7 was higher (P < 0.05) for eCG8 cows (2.3 ± 0.3 ng/mL) compared with control (1.2 ± 0.3 ng/mL) and eCG6 (1.1 ± 0.3 ng/mL) cows. In Experiment 2, eCG8 primiparous cows had more (P < 0.01) follicles > 10 mm on Day -3 compared with control primiparous cows (2.5 ± 0.9 vs 1.7 ± 0.5 mm), but multiparous control and eCG8 cows did not differ. A larger (P = 0.03) percentage of control cows received an embryo (87.5 vs 79.1%) compared with eCG8 cows. Among cows that received an embryo, total luteal volume on Day 7 was affected (P = 0.05) by treatment (eCG8 = 8.3 ± 0.4 cm3, control = 6.2 ± 0.4 cm3), but P4 concentration on Day 7 did not differ significantly between treatments. The percentage of cows pregnant 53 d after ET (overall, 24.2%) was not significantly different between control and eCG8 cows. In the current study, no differences in P/ET were observed between control and eCG8 cows and treatment with eCG increased the percentage of cows with asynchronous estrous cycle.  相似文献   

19.
The objectives were to evaluate changes in endometrial thickness (ET) near the time of a synchronized ovulation and to assess the relationship of ET and fertility in lactating Holstein cows, with or without estrogen supplementation near timed ovulation. In Experiment 1, eight cows were examined with transrectal ultrasonography, once daily for 5 d, starting concurrent with PGF (PGF) treatment during an Ovsynch protocol (GnRH - 7d - PGF - 72h - GnRH). The ET increased rapidly after PGF (from ∼7 to ∼9.5 mm), remained > 9 mm for the next 2 d, then decreased to ∼8 and 7.4 mm, 1 and 2 d, respectively, after the second GnRH. In Experiment 2,642 cows (total of 758 breedings) were subjected to an Ovsynch protocol (GnRH - 7d - PGF - 56h - GnRH - 16h - timed AI); cows received either no further treatment (Ovsynch) or 1 mg of estradiol-17β im 8 h before the second GnRH (Ovsynch + E2). For both uterine horns, ET was measured (∼2 cm from the internal uterine body bifurcation) before E2 treatment (48 h after PGF). In cows with ET ≤ 8 mm vs > 8 mm, rates of ovulation were 86.0% (n = 136) vs 98.1% (n = 472; P < 0.01), respectively, and percentage pregnant per AI (P/AI) were 26.7% (n = 146) vs 42.7% (n = 524; P < 0.01). Treatment with E2 increased P/AI in cows with lower ET (Ovsynch + E2 = 37.0% vs Ovsynch = 23.3%; P = 0.07), but did not significantly improve P/AI in cows with ET > 8 mm (Ovsynch + E2 = 43.4% vs Ovsynch = 42.1%). In conclusion, a single ultrasonographic evaluation of ET in Holstein cows 48 h after PGF treatment in an Ovsynch program was a good predictor of ovulation failure and pregnancy success. Perhaps poor fertility in cows with reduced ET was low peripheral E2 concentrations near AI, poor P4 priming, or luteolysis failure during timed AI procedures.  相似文献   

20.
Ovsynch-type synchronization of ovulation protocols have suboptimal synchronization rates due to reduced ovulation to the first GnRH treatment and inadequate luteolysis to the prostaglandin F (PGF) treatment before timed artificial insemination (TAI). Our objective was to determine whether increasing the dose of the first GnRH or the PGF treatment during the Breeding-Ovsynch portion of Double-Ovsynch could improve the rates of ovulation and luteolysis and therefore increase pregnancies per artificial insemination (P/AI). In experiment 1, cows were randomly assigned to a two-by-two factorial design to receive either a low (L) or high (H) doses of GnRH (Gonadorelin; 100 vs. 200 μg) and a PGF analogue (cloprostenol; 500 vs. 750 μg) resulting in the following treatments: LL (n = 263), HL (n = 277), LH (n = 270), and HH (n = 274). Transrectal ultrasonography and serum progesterone (P4) were used to assess ovulation to GnRH1, GnRH2, and luteal regression after PGF during Breeding-Ovsynch in a subgroup of cows (n = 651 at each evaluation). Pregnancy status was assessed 29, 39, and 74 days after TAI. In experiment 2, cows were randomly assigned to LL (n = 220) or HH (n = 226) treatment as described for experiment 1. For experiment 1, ovulation to GnRH1 was greater (P = 0.01) for cows receiving H versus L GnRH (66.6% [217/326] vs. 57.5% [187/325]) treatment, but only for cows with elevated P4 at GnRH1. Cows that ovulated to GnRH1 had increased (P < 0.001) fertility compared with cows that did not ovulate (52.2% vs. 38.5%); however, no effect of higher dose of GnRH on fertility was detected. The greater PGF dose increased luteal regression primarily in multiparous cows (P = 0.03) and tended to increase fertility (P = 0.05) only at the pregnancy diagnosis 39 days after TAI. Overall, P/AI was 47.0% at 29 days and 39.7% at 74 days after TAI; P/AI did not differ (P = 0.10) among treatments at 74 days (LL, 34.6%; HL, 40.8%; LH, 42.2%; HH, 40.9%) and was greater (P < 0.001) for primiparous cows than for multiparous cows (46.1% vs. 33.8%). For experiment 2, P/AI did not differ (P = 0.21) between H versus L treatments (44.2% [100/226] vs. 40.5% [89/220]). Thus, despite an increase in ovulatory response to GnRH1 and luteal regression to PGF, there were only marginal effects of increasing dose of GnRH or PGF on fertility to TAI after Double-Ovsynch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号