首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C.C. Dias  M.L. Day 《Theriogenology》2009,72(3):378-385
Two experiments were performed to test the hypothesis that elevated progesterone concentrations impair pregnancy rate to timed artificial insemination (TAI) in postpuberal Nelore heifers. In Experiment 1, postpuberal Nelore heifers (n = 398) received 2 mg estradiol benzoate (EB) and either a new progesterone-releasing intravaginal device containing 1.9 g of progesterone (CIDR) (first use) or a CIDR previously used for 9 d (second use) or for 18 d (third use) on Day 0, 12.5 mg prostaglandin F (PGF) on Day 7, 0.5 mg estradiol cypionate (ECP) and CIDR withdrawal on Day 9, and TAI on Day 11. Largest ovarian follicle diameter was determined on Day 11. The third-use CIDR treatment increased largest ovarian follicle diameter and pregnancy rate. Conception to TAI was reduced in heifers with smaller follicles in the first- and second-use CIDR treatments, but not in the third-use CIDR treatment. In Experiment 2, postpuberal Nelore heifers received the synchronization treatment described in Experiment 1 or received 12.5 mg PGF on Day 9 rather than Day 7. In addition, 50% of heifers received 300 IU equine chorionic gonadotropin (eCG) on Day 9. Heifers were either TAI (Experiment 2a; n = 199) or AI after detection of estrus (Experiment 2b; n = 125 of 202). In Experiment 2a, treatment with eCG increased pregnancy rate to TAI in heifers that received PGF on Day 9 but not on Day 7 and in heifers that received a first-use CIDR but not in heifers that received a third-use CIDR. Treatments did not influence reproductive performance in Experiment 2b. In summary, pregnancy rate to TAI in postpuberal Nelore heifers was optimized when lower concentrations of exogenous progesterone were administered, and eCG treatment was beneficial in heifers expected to have greater progesterone concentrations.  相似文献   

2.
Two experiments were conducted to test the hypothesis that the 5 d Co-Synch + CIDR (Controlled Internal Drug Release insert containing progesterone) protocol could be applied as an efficient timed AI (TAI) protocol in dairy heifers, and that treatment with flunixin meglumine (FM) during the period of CL maintenance would increase pregnancy per TAI (P/TAI) and late survival of embryos. Objectives were: 1) in Experiment 1, to compare P/TAI with the 5 d Co-Synch + CIDR protocol to a PGF/GnRH protocol; and 2) in Experiment 2, to determine if FM administered 15.5 and 16 d after first TAI would increase P/TAI, using the 5 d Co-Synch + CIDR protocol with a new or previously used (5 d) CIDR insert.In Experiment 1, 248 heifers were assigned randomly to either the PGF/GnRH protocol (n = 120) or the 5 d Co-Synch + CIDR protocol (n = 128). Pregnancy per TAI did not differ between the 5 d Co-Synch + CIDR protocol (53.1%) and the PGF/GnRH protocol (45.8%; P = 0.22). In Experiment 2, 325 heifers synchronized with the 5 d Co-Synch + CIDR protocol were assigned randomly to receive two injections of FM (FM group; n = 158) at 15.5 and 16 d after TAI, or to remain as untreated controls (n = 165). Pregnancy per TAI in Experiment 2 was 59.4 and 59.5% at 45 d for control and FM groups, respectively, with no differences between groups (P = 0.83). The 5 d Co-Synch + CIDR protocol resulted in an acceptable P/TAI in dairy heifers. However, FM did not improve P/TAI in dairy heifers.  相似文献   

3.
Two experiments were designed to evaluate the effects of treatments with low versus high serum progesterone (P4) concentrations on factors associated with pregnancy success in postpubertal Nellore heifers submitted to either conventional or fixed timed artificial insemination (FTAI). Heifers were synchronized with a new controlled internal drug release device (CIDR; 1.9 g of P4 [CIDR1]) or a CIDR previously used for 18 days (CIDR3) plus 2 mg of estradiol (E2) benzoate on Day 0 and 12.5 mg of prostaglandin F2α on Day 7. In experiment 1 (n = 723), CIDR were removed on Day 7 or 9 and heifers were inseminated after estrus detection. In experiment 2 (n = 1083), CIDR were all removed on Day 9 and FTAI was performed either 48 hours later in heifers that received E2 cypionate (ECP) on Day 9 (0.5 mg; E48) or 54 or 72 hours later in conjunction with administration of GnRH (100 μg; G54 or G72). Synchronization with CIDR1 resulted in greater serum P4 concentrations and smaller follicle diameters on Days 7 and 9 in both experiments. In experiment 1, treatment with CIDR for 9 days decreased the interval from CIDR removal to estrus (Day 7, 3.76 ± 0.08 days vs. Day 9, 2.90 ± 0.07; P < 0.01) and improved conception (Day 7, 57.1% vs. Day 9, 65.8%; P = 0.05) and pregnancy rates (Day 7, 37.6% vs. Day 9, 45.3%; P = 0.04). In experiment 2, treatment with ECP improved (P < 0.01) the proportion of heifers in estrus (E48, 40.9%a; G54, 17.1%c; and G72, 32.0%b), but the pregnancy rate was not affected (P = 0.64) by treatments (E48, 38.8%; G54, 35.5%; G72, 37.5%). Synchronization with CIDR3 increased follicle diameter at FTAI (CIDR1, 11.07 ± 0.10 vs. CIDR3, 11.61 ± 0.10 mm; P < 0.01), ovulation rate (CIDR1, 82.8% vs. CIDR3, 88.0%; P < 0.01) and did not affect conception (CIDR1, 42.2 vs. CIDR3, 45.1%; P = 0.38) or pregnancy rates (CIDR1, 34.7 vs. CIDR3, 39.4%; P = 0.11). In conclusion, length of treatment with P4 affected the fertility of heifers bred based on estrus detection. When the heifers were submitted to FTAI protocol, follicle diameter at FTAI (≤10.7 mm, 23.6%; 10.8–15.7 mm, 51.5%; ≥15.8 mm, 30.0%; P < 0.01) was the main factor that affected conception and pregnancy rates.  相似文献   

4.
《Theriogenology》2016,86(9):1555-1561
A pilot experiment was designed to test the hypothesis that administration of PGF before progestin treatment would allow for a reduced duration of progestin treatment in a long-term progestin-based estrus synchronization protocol. A modified presynchronization treatment was compared with a standard long-term controlled internal drug release (CIDR) treatment, and treatments were compared on the basis of ovarian follicular dynamics, estrous response rate, synchrony of estrus expression, and pregnancy rates resulting from timed artificial insemination (TAI) in postpartum beef cows. Estrous was synchronized for 85 cows, with cows assigned to one of two treatments based on age, days postpartum, and body condition score. Cows assigned to the 14-day CIDR-PG protocol received a CIDR insert (1.38 g progesterone) on Day 0, CIDR removal on Day 14, and administration of PGF (25 mg im) on Day 30. Cows assigned to the 9-day CIDR-PG protocol received PGF concurrent with CIDR insertion on Day 5, PGF concurrent with CIDR removal on Day 14, and administration of PGF on Day 30. In both treatments, split-time AI was performed based on estrous response. At 72 hours after PGF (Day 33), cows having expressed estrus received TAI; cows that failed to express estrus by 72 hours received TAI 24 hours later (96 hours after PGF on Day 34), with GnRH (100 μg im) administered to nonestrous cows. Estrus-detection transmitters were used from CIDR removal until AI to determine onset time of estrus expression both after CIDR removal and after PGF. Ovarian ultrasonography was performed at CIDR removal on Day 14, PGF on Day 30, and AI on Days 33 or 34. At CIDR removal on Day 14, diameter of the largest follicle present on the ovary was similar between treatments. The proportion of cows expressing estrus after CIDR removal tended to be higher (P = 0.09) among cows assigned to the 9-day CIDR-PG treatment (93%; 40 of 43) than among cows assigned to the 14-day CIDR-PG treatment (81%; 34 of 42). After PGF, a significantly higher proportion (P = 0.02) of cows expressed estrus after synchronization with the 9-day CIDR-PG treatment (91%; 39 of 43) than the 14-day CIDR-PG treatment (69%; 29 of 42). Consequently, pregnancy rate to TAI tended to be increased (P = 0.09) among the 9-day CIDR-PG treatment (76.7%; 33 of 43) compared with the 14-day CIDR-PG treatment (59.5%; 25 of 42). In summary, a long-term CIDR-based estrous synchronization protocol for postpartum beef cows was enhanced through administration of PGF at CIDR insertion and CIDR removal.  相似文献   

5.
The objective of this study was to determine the effects of progesterone and cloprostenol (a PGF analogue) on ovarian follicular development and ovulation in prepubertal heifers. In Experiment 1, crossbred Hereford heifers (Bos taurus; 10 to 12 mo old, 255 to 320 kg) were assigned randomly to three groups and given (1) an intravaginal progesterone-releasing insert (CIDR; P group, n = 13); (2) a CIDR plus 500 μg cloprostenol im (PGF analogue) at CIDR removal (PPG group, n = 11); or (3) no treatment (control group, n = 14). The CIDR inserts were removed 5 d after follicular wave emergence. Progesterone-treated heifers (P and PPG groups) had a larger dominant follicle than that of the control group (P = 0.01). The percentage ovulating was highest in the PPG group (8 of 11, 73%), intermediate in the P group (4 of 13, 31%), and lowest in the control group (1 of 14, 7%; P < 0.02). In Experiment 2, 16 heifers (14 to 16 mo old, 300 to 330 kg) were designated to have follicular wave emergence synchronized with either a CIDR and 1 mg estradiol benzoate im (EP group, n = 8) on Day 0 (beginning of experiment) or by transvaginal ultrasound-guided ablation of all follicles ≥5 mm on Day 3 (FA group, n = 8). On Day 7, CIDRs were removed in the EP group, and all heifers received 500 μg cloprostenol im. Ovulation was detected in 6 of 8 heifers (75%) in both groups. In summary, the use of PGF with or without exogenous progesterone treatment increased the percentage ovulating in heifers close to spontaneous puberty.  相似文献   

6.
We hypothesized that pregnancy outcomes may be improved by inducing luteal regression, ovulation, or both (i.e., altering progesterone status) before initiating a timed–artificial insemination (TAI) program in suckled beef cows. This hypothesis was tested in two experiments in which cows were treated with either PGF (PG) or PG + GnRH before initiating a TAI program to increase the proportion of cows starting the program in a theoretical marginal (<1 ng/mL; experiment 1) or elevated (≥1 ng/mL; experiment 2) progesterone environment, respectively. The control was a standard CO-Synch + controlled internal drug release (CIDR) program employed in suckled beef cows (100 μg GnRH intramuscularly [IM] [GnRH-1] and insertion of a progesterone-impregnated intravaginal CIDR insert on study Day −10, 25 mg PG and CIDR insert removal on study Day −3, and 100 μg GnRH IM [GnRH-2] and TAI on study Day 0). In both experiments, blood was collected before each injection for later progesterone analyses. In experiment 1, cows at nine locations (n = 1537) were assigned to either: (1) control or (2) PrePG (same as control with a PG injection on study Day −13). The PrePG cows had larger (P < 0.05) follicles on study Day −10 and more (P < 0.05) ovulated after GnRH-1 compared with control cows (60.6% vs. 36.5%), but pregnancy per TAI was not altered (55.5% vs. 52.2%, respectively). In experiment 2, cows (n = 803) at four locations were assigned to: (1) control or (2) PrePGG (same as control with PG injection on study Day −20 and GnRH injection on study Day −17). Although pregnancy per TAI did not differ between control and PrePGG cows (44.0% vs. 44.4%, respectively), cows with body condition score greater than 5.0 or 77 or more days postpartum at TAI were more (P < 0.05) likely to become pregnant than thinner cows or those with fewer days postpartum. Presynchronized cows in both experiments were more (P < 0.05) likely than controls to have luteolysis after initial PG injections and reduced (P < 0.05) serum progesterone; moreover, treatments altered the proportion of cows and pregnancy per TAI of cows in various progesterone categories before the onset of the TAI protocol. In combined data from both experiments, cows classified as anestrous before the study but with elevated progesterone on Day −10 had increased (P < 0.05) pregnancy outcomes compared with anestrous cows with low progesterone concentrations. Progesterone concentration had no effect on pregnancy outcome of cycling cows. In summary, luteal regression and ovulation were enhanced and progesterone concentrations were altered by presynchronization treatments before the 7-day CO-Synch + CIDR program, but pregnancy per TAI was not improved.  相似文献   

7.
Two experiments were designed to evaluate strategies to increase fertility of Bos indicus postpubertal heifers and nonlactating cows submitted to a fixed-time artificial insemination (TAI) protocol consisting of an intravaginal device containing 1.9 g of progesterone (CIDR) insertion + estradiol benzoate on Day 0, CIDR withdrawal + estradiol cypionate on Day 9, and TAI on Day 11. In Experiment 1, heifers (n = 1153) received a new or an 18-d previously used CIDR and, on Day 9, prostaglandin F (PGF) + 0, 200, or 300 IU equine chorionic gonadotropin (eCG). Heifers treated with a new CIDR had greater (least squares means ± SEM) serum concentration of progesterone on Day 9 (3.06 ± 0.09 ng/mL vs. 2.53 ± 0.09 ng/mL; P < 0.05) and a smaller follicle at TAI (11.61 ± 0.11 mm vs. 12.05 ± 0.12 mm; P < 0.05). Heifers with smaller follicles at TAI had lesser serum progesterone concentrations on Day 18 and reduced rates of ovulation, conception, and pregnancy (P < 0.05). Treatment with eCG improved (P < 0.05) follicle diameter at TAI (11.50 ± 0.10 mm, 11.90 ± 0.11 mm, and 12.00 ± 0.10 mm for 0, 100, and 200 IU, respectively), serum progesterone concentration on Day 18 (2.77 ± 0.11 ng/mL, 3.81 ± 0.11 ng/mL, and 4.87 ± 0.11 ng/mL), and rates of ovulation (83.8%, 88.5%, and 94.3%) and pregnancy (41.3%, 47.0%, and 46.7%). In Experiment 2, nonlactating Nelore cows (n = 702) received PGF treatment on Days 7 or 9 and, on Day 9, 0 or 300 IU eCG. Cows receiving PGF on Day 7 had lesser serum progesterone concentrations on Day 9 (3.05 ± 0.21 ng/mL vs. 4.58 ± 0.21 ng/mL; P < 0.05), a larger follicle at TAI (11.54 ± 0.21 mm vs. 10.84 ± 0.21 mm; P < 0.05), and improved (P < 0.05) rates of ovulation (85.4% vs. 77.0%), conception (60.9% vs. 47.2%), and pregnancy (52.0% vs. 36.4%). Treatment with eCG improved (P < 0.05) serum progesterone concentration on Day 18 (3.24 ± 0.14 ng/mL vs. 4.55 ± 0.14 ng/mL) and the rates of ovulation (72.4% vs. 90.0%) and pregnancy (37.5% vs. 50.8%). In conclusion, giving PGF earlier in the protocol in nonlactating cows and eCG treatment in postpubertal heifers and nonlactating cows improved fertility in response to a TAI (progesterone + estradiol) protocol.  相似文献   

8.
The objective was to determine the efficacy of a previously used CIDR or melengestrol acetate (MGA; 0.5mg/head/day) for resynchronization of estrus in beef heifers not pregnant to timed-AI (TAI). In three experiments and a field trial, heifers were reinseminated 6-12 h after first detection of estrus. Pregnancy diagnosis was done from approximately 25-43 days after either TAI or reinsemination. In Experiment 1, 79 heifers received a once-used CIDR from 13 to 20 days after TAI and 80 heifers were untreated controls. For these two groups, there were 34 and 35 heifers, respectively, not pregnant to TAI; median +/- S.E. intervals from TAI to onset of estrus were 22 +/- 0.2 days versus 20 +/- 0.6 days (P < 0.001); estrus rates were 70.6% versus 85.7% (P = 0.1); conception rates were 62.5% versus 76.7% (P < 0.3); and pregnancy rates were 44.1% versus 65.7% (P = 0.07), for CIDR and untreated (control) groups, respectively. In Experiment 2, heifers (n = 651) were TAI (Day 0) and 13 days later randomly assigned to one of seven groups (n = 93 per group) to receive a once-used CIDR (three groups; Days 13-20), MGA (three groups; Days 13-19), or no treatment (control group). Groups given a CIDR or MGA also received: no further treatment (CIDR or MGA alone); 1.5mg estradiol-17beta (E-17beta) and 50 mg progesterone (P4) in 2 mL canola oil on Day 13; or E-17beta and P4 on Day 13 and 0.5 mg E-17beta on Day 21 (24 h after CIDR removal or 48 h after the last feeding of MGA). Pregnancy rate to TAI was lowest (P < 0.05) for the group given a CIDR plus E-17beta and P4 on Day 13 and E-17beta on Day 21. Variability in return to estrus was greater (P < 0.001) in the control and MGA groups than in CIDR groups. Conception and pregnancy rates in heifers given a CIDR (65.1 and 61.4%) were higher (P<0.01) than those fed MGA (49.6 and 40.4%), but not different from controls (62.2 and 54.9%, respectively). In Experiment 3, 616 heifers received a once- or twice-used CIDR for 7 days, beginning 13+/-1 days after TAI, with or without a concurrent injection of 150 mg of P4 (2 x 2 factorial design). Pregnancy rate to TAI was 47.2%. In heifers that returned to estrus, there was no significant difference between a once- or twice-used CIDR for rates of estrus (68.8%, P < 0.3), conception (65.9%, P < 0.6) and pregnancy (45.3%, P < 0.8). Injecting progesterone at CIDR insertion increased the median interval from CIDR removal to onset of estrus (P < 0.05) and reduced rates of estrus (63.8% versus 73.8%, P<0.05), conception (60.5% versus 70.6%, P = 0.1) and pregnancy (38.6% versus 52.2%, P < 0.02). In a field trial, 983 heifers received a once-used CIDR for 7 days, beginning 13 +/- 1 days after TAI. Pregnancy rate to TAI was 55.2%. The median (and mode) of the interval from CIDR removal to estrus was 2.5 days. Estrus, conception and pregnancy rates were 78.2, 70.3 and 55.0% (overall pregnancy rate to TAI and rebreeding, 78.7%). In summary, a once- or twice-used CIDR for 7 days, starting 13 +/- 1 days after TAI resulted in the majority of nonpregnant heifers detected in estrus over a 4-day interval, with acceptable conception rates; however, injecting progesterone at CIDR insertion significantly reduced both estrus and pregnancy rates, and estradiol treatment after CIDR removal was associated with a decreased pregnancy rate to TAI. Fertility was higher in heifers resynchronized with a once-used CIDR than with MGA.  相似文献   

9.
Yearling Bos indicus × Bos taurus heifers (n = 410) from three locations, were synchronized with either the Select Synch/CIDR+timed-AI (SSC+TAI) or 7-11+timed-AI (7-11+TAI) treatments. On Day 0 of the experiment, within each location, heifers were equally distributed to treatments by reproductive tract score (RTS; Scale 1-5: 1 = immature, 5 = estrous cycling) and body condition score. The 7-11+TAI treatment consisted of melengestrol acetate (0.5 mg/head/d) from Days 0 to 7, with PGF (25 mg im) on Day 7, GnRH (100 μg im) on Day 11, and PGF (25 mg im) on Day 18. The SSC+TAI heifers received the same carrier supplement (without MGA) from Days 0 to 7, and on Day 11 they were given 100 μg GnRH and an intravaginal CIDR (containing 1.38 g progesterone). The CIDR were removed on Day 18, concurrent with 25 mg PGF im For both treatments, estrus was visually detected for 1 h twice daily (0700 and 1600 h) for 72 h after PGF, with AI done 6 to 12 h after a detected estrus. Non-responders were timed-AI and received GnRH (100 μg im) 72 to 76 h post PGF. The 7-11+TAI heifers had a greater (P < 0.05) estrous response (55.2 vs 41.9%), conception rate (47.0 vs 31.3%), and synchronized pregnancy rate (33.5 vs 24.8%) compared to SSC+TAI heifers, respectively. Heifers exhibiting estrus at 60 h (61.7%) had a greater (P < 0.05) conception rate compared to heifers that exhibited estrus at ≤ 36 (35.3%), 48 (31.6%), and 72 h (36.2%), which were similar (P > 0.05) to each other. As RTS increased from ≤ 2 to ≥ 3, estrous response, conception rate, synchronized pregnancy rate, and 30 d pregnancy rate all increased (P < 0.05), irrespective of synchronization treatment. In conclusion, the 7-11+TAI treatment yielded greater synchronized pregnancy rates compared to SSC+TAI treatment in yearling Bos indicus × Bos taurus heifers.  相似文献   

10.
The objective was to evaluate the effects of exogenous progesterone (P4) on reproductive performance of prepubertal Bos indicus heifers. Prepubertal Nelore heifers (n = 589; 24.0 ± 1.13 mo; 298.0 ± 1.89 kg; body condition score of 3.2 ± 0.26; mean ± SEM) were randomly assigned to receive, between experimental Days −12 and 0: no treatments (CIDR0; n = 113); a new intravaginal insert (CIDR) containing 1.9 g of P4 (CIDR1; n = 237); or a similar insert previously used three times, with each use occurring for 9 d (CIDR4; n = 239). An additional treatment group was pubertal heifers given 12.5 mg dinoprost tromethamine im on Day 0 (PGF; n = 346), and used as controls for evaluation of conception rates. On Day 0, transrectal palpation was done for uterine score evaluation (UtS; 1-3 scale), blood samples were taken for serum P4 concentrations, and follicle diameter (FD) was measured. The breeding season started on Day 1 and consisted of AI after detection of estrus between Days 1 and 45, and exposure to bulls between Days 46 and 90. There were effects of treatment (P < 0.05) on serum concentrations of P4 on Day 0 (0.37 ± 0.16, 2.31 ± 0.11, and 1.20 ± 0.11 ng/mL for CIDR0, CIDR1, and CIDR4, respectively; mean ± SEM), FD on Day 0 (9.45 ± 0.24, 9.72 ± 0.17, and 11.42 ± 0.16 mm), UtS on Day 0 (1.49 ± 0.06, 1.88 ± 0.04, and 2.24 ± 0.04), estrus detection rates at 7 d (19.5, 42.6, and 38.3%) and 45 d (52.2, 72.1, and 75.3%) of the breeding season, and on pregnancy rates at 7 d (5.3, 14.3, and 18.4%), 45 d (27.4, 39.2, and 47.7%) and 90 d (72.6, 83.5, and 83.7%) of the breeding season. Conception rate 7 d after the start of the breeding season was greater (P < 0.05) in heifers from the CIDR4 (46.8%) and PGF (43.8%) groups than in the CIDR0 (27.3%) and CIDR1 (33.7%) groups. In conclusion, exogenous P4 hastened puberty and improved pregnancy rates at the beginning of the breeding season in prepubertal Bos indicus heifers. Furthermore, previously used CIDR inserts were better than new inserts.  相似文献   

11.
The objective was to determine whether the presence of fertility-associated antigen (FAA) on sperm collected from Nelore (Bos indicus) bulls can be used to assess potential fertility of sperm for use at first-service fixed-time AI (TAI). Six Nelore bulls were selected based on FAA status (FAA-negative: N = 3; FAA-positive: N = 3) and the ability to produce neat semen with ≥ 70% morphologically normal sperm and 60% estimated progressive motility before cryopreservation. In Experiment 1, suckled multiparous Nelore cows (N = 835) were evaluated for body condition score (BCS) and received an intravaginal progesterone device (CIDR) and 2.0 mg of estradiol benzoate (Day 0). On Day 9 the CIDR was removed, 12.5 mg of PGF and 0.5 mg of estradiol cypionate were administered, and calves were removed for 48 h. All cows received TAI on Day 11 (48 h after CIDR removal). Pregnancy per TAI (P/TAI) was not different between FAA-positive and FAA-negative bulls (41.5% vs. 39.3%, respectively). There was an effect of AI technician on P/TAI (36.0% vs. 43.9%; P < 0.05) and BCS tended to affect P/TAI (P = 0.09), as cows with BCS ≥ 2.75 were 1.4 times more likely to become pregnant compared with cows with BCS < 2.75. In Experiment 2, nulliparous Nelore heifers (N = 617) were evaluated for BCS and received a CIDR and estradiol benzoate (2.0 mg) on Day 0. On Day 7, all heifers received PGF (12.5 mg). On Day 9, CIDR inserts were removed and all heifers received estradiol cypionate (0.6 mg) and 200 IU eCG. All heifers received TAI on Day 11 (48 h after CIDR removal). Pregnancy/TAI was different (P = 0.04) between FAA-positive and FAA-negative bulls (33.7% vs. 40.7%, respectively). Presence of FAA on sperm was unsuccessful in assessing the potential fertility of sperm for use in TAI.  相似文献   

12.
Five experiments were conducted on commercial farms in Brazil aiming to develop a fixed-time artificial insemination (TAI) protocol that achieved pregnancy rates between 40% and 55% in Bos indicus cows. These studies resulted in the development of the following protocol: insertion of an intravaginal device containing 1.9 g of progesterone (CIDR) plus 2.0 mg im estradiol benzoate on Day 0; 12.5 mg im dinoprost tromethamine on Day 7 in cycling cows or on Day 9 in anestrous cows; CIDR withdrawal plus 0.5 mg im estradiol cypionate plus temporary calf removal on Day 9; TAI (48 h after CIDR withdrawal) plus reuniting of calves with their dams on Day 11. Reduced dose of prostaglandin F (PGF; 12.5 mg im dinoprost tromethamine) effectively caused luteolysis. In cycling cows, fertility was greater when the treatment with PGF was administered on Day 7 than on Day 9, but in anestrous cows, no effects of time of the PGF treatment were found. Estradiol cypionate effectively replaced estradiol benzoate or gonadotropin-releasing hormone as the ovulatory stimulus, reducing labor and cost. In this protocol, CIDR inserts were successfully used four times (9 d each use) with no detrimental effects on fertility.  相似文献   

13.
The objective was to determine whether timed artificial insemination (TAI) 56 h after removal of a Controlled Internal Drug Release (CIDR, 1.38 g of progesterone) insert would improve AI pregnancy rate in beef heifers compared to TAI 72 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol. Angus cross beef heifers (n = 1098) at nine locations [WA (5 locations; n = 634), ID (2 locations; n = 211), VA (one location; n = 193) and WY (one location; n = 60)] were included in this study. All heifers were given a body condition score (BCS; 1-emaciated; 9-obese), and received a CIDR insert and 100 μg of gonadorelin hydrochloride (GnRH) on Day 0. The CIDR insert was removed and two doses of 25 mg of dinoprost (PGF) were given, first dose at CIDR insert removal and second dose 6 h later, on Day 5. A subset of heifers (n = 629) received an estrus detector aid at CIDR removal. After CIDR removal, heifers were observed thrice daily for estrus and estrus detector aid status until they were inseminated. Within farm, heifers were randomly allocated to two groups and were inseminated either at 56 h (n = 554) or at 72 h (n = 544) after CIDR removal. All heifers were given 100 μg of GnRH at AI. Insemination 56 h after CIDR insert removal improved AI pregnancy rate compared to insemination 72 h (66.2 vs. 55.9%; P < 0.001; 1 - β = 0.94). Locations, BCS categories (≤ 6 vs. > 6) and location by treatment and BCS by treatment interactions did not influence AI pregnancy rate (P > 0.1). The AI pregnancy rates for heifers with BCS ≤ 6 and > 6 were 61.8 and 60.1%, respectively (P > 0.1). The AI pregnancy rates among locations varied from 54.9 to 69.2% (P > 0.1). The AI pregnancy rate for heifers observed in estrus at or before AI was not different compared to heifers not observed in estrus [(65.4% (302/462) vs. 52.7% (88/167); P > 0.05)]. In conclusion, heifers inseminated 56 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol had, on average, 10.3% higher AI pregnancy rate compared to heifers inseminated 72 h after CIDR insert removal.  相似文献   

14.
The objective was to investigate the influence of corpora lutea physical and functional characteristics on pregnancy rates in bovine recipients synchronized for fixed-time embryo transfer (FTET). Crossbred (Bos taurus taurus × Bos taurus indicus) nonlactating cows and heifers (n = 259) were treated with the following protocol: 2 mg estradiol benzoate (EB) plus an intravaginal progesterone device (CIDR 1.9 g progesterone; Day 0); 400 IU equine chorionic gonadotropin (eCG; Day 5); prostaglandin F (PGF) and CIDR withdrawal (Day 8); and 1 mg EB (Day 9). Ovarian ultrasonography and blood sample collections were performed on Day 17. Of the 259 cattle initially treated, 197 (76.1%) were suitable recipients; they received a single, fresh, quality grade 1 or 2 in vivo-derived (n = 90) or in vitro-produced (n = 87) embryo on Day 17. Pregnancy rates (23 d after embryo transfer) were higher for in vivo-derived embryos than for in vitro-produced embryos (58.8% vs. 31.0%, respectively; P < 0.001). Mean (±SD) plasma progesterone (P4) concentration was higher in cattle that became pregnant than that in nonpregnant cattle (5.2 ± 5.0 vs. 3.8 ± 2.4 ng/mL; P = 0.02). Mean pixel values (71.8 ± 1.3 vs. 71.2 ± 1.1) and pixel heterogeneity (14.8 ± 0.3 vs. 14.5 ± 0.5) were similar between pregnant and nonpregnant recipients (P > 0.10). No significant relationship was detected between pregnancy outcome and plasma P4, corpus luteum area, or corpus luteum echotexture. Embryo type, however, affected the odds of pregnancy. In conclusion, corpus luteum-related traits were poor predictors of pregnancy in recipients. The type of embryo, however, was a major factor affecting pregnancy outcome.  相似文献   

15.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

16.
The objective of this study was to evaluate the effect of a PGF2α-analogue (PGF) on ovulation and pregnancy rates after timed artificial insemination (TAI) in cattle. In experiment 1, crossbred dual-purpose heifers, in a crossover design (3 × 3), were given an intravaginal progesterone-releasing insert (controlled internal drug release [CIDR]) plus 1 mg estradiol benzoate (EB) intramuscularly (im) and 250 μg of a PGF-analogue im on Day 0. The CIDR inserts were removed 5 days after follicular wave emergence, and the heifers were randomly divided into three treatment groups to receive the following treatments: (1) 1 mg of EB im (EB group, n = 13); (2) 500 μg of PGF im (PG group, n = 13); or (3) saline (control group, n = 13), 24 hours after CIDR removal. Ovulation occurred earlier in EB (69.81 ± 3.23 hours) and PG groups (73.09 ± 3.23 hours) compared with control (83.07 ± 4.6 hours; P = 0.01) after CIDR removal. In experiment 2, pubertal beef heifers (n = 444), 12 to 14 months of age were used. On Day 0, the heifers were given a CIDR insert plus 2 mg EB im. On Day 9, the CIDR was removed and the heifers were given 500 μg of PGF im. Heifers were randomly assigned into one of three treatment groups: (1) 1 mg of EB (EB group; n = 145); (2) 500 μg of PGF (PG group; n = 149), both 24 hours after CIDR removal; or (3) 600 μg of estradiol cypionate (ECP group; n = 150) at CIDR removal. Timed artificial insemination occurred 48 hours after CIDR removal in the ECP group and 54 hours in the PG and EB groups. The percentage of heifers ovulating was higher in the PG group compared with the other groups (P = 0.08). However, the pregnancy rates did not differ among groups (47.6%, 45%, and 46.6%, for EB, PG, and ECP, respectively; P = 0.9). In experiment 3, 224 lactating beef cows, 40 to 50 days postpartum with 2.5 to 3.5 of body condition score were treated similarly as described in experiment 2, except for the ECP group, which was excluded. The treatments were as follows: 1 mg EB (EB group; n = 117) or 500 μg PGF (PG group; n = 107), 24 hours after CIDR removal. The calves were temporarily separated from their dams from Days 9 to 11. No difference was detected on the pregnancy rate between the EB and PG groups (58.1% vs. 47.6%, respectively; P = 0.11). Taken together, the combined results suggested that PGF2α could be successfully used to induce and synchronize ovulation in cattle undergoing TAI, with similar pregnancy rates when compared with other ovulatory stimuli (ECP and EB).  相似文献   

17.
This study evaluated fertility in swamp buffalo after synchronization of ovulation combined with fixed time artificial insemination. At the start of the study, designated day 0, from a group of 98 female Thai swamp buffalo, 55 buffalo (heifers n° = 20 and cows n° = 35) were selected to be synchronized with GnRH (Day 0) followed by PGF2alpha (Day 7) and a second treatment with GnRH (Day 9). All buffalo were inseminated at two fixed times 12 h and 24 h after the second injection of GnRH (Ovsynch+TAI group); a second group of 43 buffalo (heifers n° = 19 and cows n° = 24) were not treated and were artificially inseminated (AI) at natural estrus (AI group). Blood samples were taken 22 days after insemination to evaluate progesterone plasma levels. In the Ovsynch+TAI group, overall conception rate (CR; i.e. the number of cows with progesterone >4.0 ng/ml on day 22 after AI divided by the number of animals inseminated), was 38.1% and overall pregnancy rate (PR; i.e. the number of cows that were pregnant at day 50-60 after insemination divided by the number of animals inseminated), was 32.7%. In the AI group overall CR and PR was 34.9%.Within the Ovsynch+TAI group, CR and PR were reduced (P < 0.05) in heifers compared with cows (CR 15.0% vs. 51.4% for heifers and cows, respectively; PR 15.0% vs. 42.9% for heifers and cows, respectively). Within the AI group the efficacy of treatment was similar between heifers and cows (CR and PR 31.6% for heifers and 37.5% for cows).In conclusion, this study indicates that in swamp buffalo it is possible to synchronize ovulation and use timed artificial insemination with the Ovsynch+TAI protocol.  相似文献   

18.
This study evaluated the effect of removing the GnRH injection on Day 0 or the progesterone (P4) device from a GnRH, PGF2α, GnRH (GPG) + P4 program on follicular dynamics and synchronization of ovulation in dairy heifers. Friesian and Friesian × Jersey heifers, in autumn 2009 (n = 35) and spring 2010 (n = 38), were randomly allocated to one of three estrus synchronization programs. The first group (GPG + P4) received 100 μg GnRH on Day 0, a P4-releasing intravaginal device from Days 0 to 7, 500 μg PGF2α on Day 7, and 100 μg GnRH on Day 9, followed by fixed-time artificial insemination 16 to 20 hours later. The program for group 2 (GPG) was the same as group 1 with the exclusion of the P4 device. Group 3 (P + G + P4) was treated the same as group 1, except for the absence of the GnRH treatment on Day 0. Ultrasonography was performed on Days 0, 1, 2, 3, and 7 and then at 12 hourly intervals on Days 9 to 11. Dominant follicle size was affected by both treatment and day, and there was also a significant interaction (P < 0.02) between treatment and day. Mean dominant follicle size was larger in the heifers treated with P + G + P4 on Days 1 to 3 than those treated with GPG + P4 (P < 0.02) and, on Day 2, than those treated with GPG (P = 0.005). However, on Day 7, mean dominant follicle size was larger in heifers treated with GPG than heifers treated with P + G + P4 (P = 0.03). The emergence of a new follicular wave was later in heifers treated with P + G + P4 than heifers, which received a GnRH injection on Day 0 (4.3 ± 0.7 days, compared with combined GPG + P4 and GPG 3.0 ± 0.3 days; P = 0.03). The proportion of heifers that ovulated within the first 48 hours after the Day 9 injection of GnRH was not affected by treatment (GPG, 81%; GPG + P4, 84%; and P + G + P4, 100% [including early ovulation]; P = 0.11). The timing of the ovulation was not different between treatments (P = 0.97).  相似文献   

19.
Two experiments were conducted to investigate the effects of equine chorionic gonadotropin (eCG) at progestin removal and gonadotropin-releasing hormone (GnRH) at timed artificial insemination (TAI) on ovarian follicular dynamics (Experiment 1) and pregnancy rates (Experiment 2) in suckled Nelore (Bos indicus) cows. Both experiments were 2 × 2 factorials (eCG or No eCG, and GnRH or No GnRH), with identical treatments. In Experiment 1, 50 anestrous cows, 134.5 ± 2.3 d postpartum, received a 3 mg norgestomet ear implant sc, plus 3 mg norgestomet and 5 mg estradiol valerate im on Day 0. The implant was removed on Day 9, with TAI 54 h later. Cows received 400 IU eCG or no further treatment on Day 9 and GnRH (100 μg gonadorelin) or no further treatment at TAI. Treatment with eCG increased the growth rate of the largest follicle from Days 9 to 11 (means ± SEM, 1.53 ± 0.1 vs. 0.48 ± 0.1 mm/d; P < 0.0001), its diameter on Day 11 (11.4 ± 0.6 vs. 9.3 ± 0.7 mm; P = 0.03), as well as ovulation rate (80.8% vs. 50.0%, P = 0.02), whereas GnRH improved the synchrony of ovulation (72.0 ± 1.1 vs. 71.1 ± 2.0 h). In Experiment 2 (n = 599 cows, 40 to 120 d postpartum), pregnancy rates differed (P = 0.004) among groups (27.6%, 40.1%, 47.7%, and 55.7% for Control, GnRH, eCG, and eCG + GnRH groups). Both eCG and GnRH improved pregnancy rates (51.7% vs. 33.8%, P = 0.002; and 48.0% vs 37.6%, P = 0.02, respectively), although their effects were not additive (no significant interaction). In conclusion, eCG at norgestomet implant removal increased the growth rate of the largest follicle (LF) from implant removal to TAI, the diameter of the LF at TAI, and rates of ovulation and pregnancy rates. Furthermore, GnRH at TAI improved the synchrony of ovulations and pregnancy rates in postpartum Nelore cows treated with a norgestomet-based TAI protocol.  相似文献   

20.
The present study evaluated whether a controlled internal drug release (CIDR)-based timed AI (TAI) protocol could be used as an efficient tool for the treatment of ovarian follicular cysts in lactating dairy cows. In the first experiment, lactating dairy cows diagnosed with follicular cysts were randomly assigned to two treatments: (1) a single injection of GnRH at diagnosis (Day 0) and AI at estrus (AIE) within 21 days (GnRH group, n=70), or (2) insertion of a CIDR device containing progesterone and an injection of GnRH on Day 0, PGF(2alpha) injection at the time of CIDR removal on Day 7, GnRH injection on Day 9, and TAI 16h after the GnRH injection (CIDR-based TAI group, n=65). Conception rate after the CIDR-based TAI protocol (52.3%) was greater (P<0.05) than that after AIE following a single GnRH injection (26.9%). In the second experiment, lactating dairy cows diagnosed with follicular cysts (Cyst group, n=16) and cows having normal estrous cycles (CYC group, n=15) received the same treatment: a CIDR device containing progesterone and an injection of GnRH on Day 0, PGF(2alpha) injection at the time of CIDR removal on Day 7, and GnRH injection on Day 9. The proportion of cows with follicular wave emergence and the interval from treatment to follicular wave emergence did not differ (P>0.05) between groups. The mean diameters of dominant follicles on Days 4 and 7 as well as preovulatory follicles on Day 9, and the synchrony of ovulation following the second injection of GnRH did not differ (P>0.05) between groups. These data suggest that the CIDR-based TAI protocol results in an acceptable conception rate in dairy cows with follicular cysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号