首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Placental villous development requires the co-ordinated action of angiogenic factors on both endothelial and trophoblast cells. Like vascular endothelial growth factor (VEGF), VEGF-C increases vascular permeability, stimulates endothelial cell proliferation and migration. In the present study, we investigated the expression of VEGF-C and its receptors VEGFR-3 and VEGFR-2 in normal and intrauterine growth-restricted (IUGR) placenta. Immunolocalisation studies showed that like VEGF and VEGFR-1, VEGF-C, VEGFR-3 and VEGFR-2 co-localised to the syncytiotrophoblast, to cells in the maternal decidua, as well as to the endothelium of the large placental blood vessels. Western blot analysis demonstrated a significant decrease in placental VEGF-C and VEGFR-3 protein expression in severe IUGR as compared to gestationally-matched third trimester pregnancies. Conditioned medium from VEGF-C producing pancreatic carcinoma (Suit-2) and endometrial epithelial (Hec-1B) cell lines caused an increased association of the phosphorylated extracellular signal regulated kinase (ERK) in VEGFR-3 immunoprecipitates from spontaneously transformed first trimester trophoblast cells. VEGF121 caused dose-dependant phosphorylation of VEGFR-2 in trophoblast cells as well as stimulating DNA synthesis. In addition, premixing VEGF165 with heparin sulphate proteoglycan potentiated trophoblast proliferation and the association of phospho-ERK with the VEGFR-2 receptor. VEGF165-mediated DNA synthesis was inhibited by anti-VEGFR-2 neutralising antibody. The results demonstrate functional VEGFR-2 and VEGFR-3 receptors on trophoblast and suggest that the decreased expression of VEGF-C and VEGFR-3 may contribute to the abnormal villous development observed in IUGR placenta.  相似文献   

2.
The histomorphometric and proliferative characteristics of the collared peccary (Tayassu tajacu) placenta and uterus were analyzed. The material was examined by standard histological techniques and histochemistry (PAS, Perls and Alcian Blue pH 0.5 and 2.5%) and the cellular proliferation by AgNORs and flow cytometry. All the analyzed morphometric variables differed between pregnant and non-pregnant uteri in the luteal phase using the Dunnet test. Height and gland diameter of uterine glands increased linearly during pregnancy, with an intense positive PAS and Perls reaction in all stages. The cells with more than seven AgNORs per nuclei and the cells in the G2M cell cycle phase in the maternal tissue also increased after 70 days of pregnancy. The uteroplacental ridges had a linear increase in size with two distinct areas, base and top, with uterine epithelium and trophoblastic cells changing their morphology following the placental ridge development. Flow cytometry analysis showed the percentage of cells in each cell cycle phase with a quadratic behavior for stages G2/M in the maternal tissue, suggesting an increase in proliferative capacity of maternal tissue after 65 days of pregnancy. The same quadratic effect was observed in the G0/G1 phase in both maternal and fetal tissues. Cells in apoptosis showed cubic behavior in both tissues. The morphometric and cellular dynamic aspects observed in this study have not been previously described and they extend our knowledge of functions relating to maternal-fetal dynamics in this species.  相似文献   

3.
Ultrasound imaging has been used to elucidate certain aspects of the reproductive biology of wild or endangered species. However, to our knowledge, this tool has not been used for reproductive monitoring of the collared peccary (Tayassu tajacu). In this study, real-time ultrasonography was used in 16 collared peccary females to diagnose early pregnancy status and predict gestational age. Based on the detection of an embryo, the earliest pregnancy diagnosis was made on Day 18 after mating, with the mean time needed for diagnosis being 22 days. Overall accuracies on Days 22, 26 and 28 were 56, 93, and 100%, respectively. On Days 26 and 28, all pregnancy and non-pregnancy diagnoses, respectively, were correct. The fetal measurements that best correlated with gestational age were crown-rump-length (CRL) and the length and diameter of the thorax. CRL was considered the most practical measurement because, contrary to thoracic fetometry, it could be determined when the embryo was first detected. Our findings revealed real-time ultrasound scanning to be a very accurate method for early pregnancy diagnosis and prediction of gestational age in the collared peccary.  相似文献   

4.
5.
Vascular endothelial growth factor (VEGF) is fundamental for development and maintenance of endometrial and placental vascular function during pregnancy. While there are a number of studies on VEGF in the human placenta, they are mostly restricted to late pregnancy. To further understand the role of VEGF in mediating angiogenesis during human early pregnancy, we employed a rhesus monkey early pregnancy model to study the temporal and spatial expression of VEGF and its receptors, fms-like tyrosine kinase (Flt)-1, and kinase-insert domain-containing receptor (KDR) mRNAs and proteins in the uteri on day 12, 18, and 26 of pregnancy using in situ hybridization, RT-PCR, and immunohistochemistry. VEGF mRNA had been identified in the luminal epithelium on day 12, in the glandular epithelium on day 12 and 18, and the highest expression was detected in the walls of some spiral arterioles adjacent to the implantation site on day 18, in the placental villi and in the fetal-maternal border on day 18 and 26. Besides, immunostaining of VEGF was detected in the placental villi and endometrial compartments including spiral arteries walls and the glandular epithelium. The localization of VEGF in the endothelium correlates with the presence of Flt-1 and KDR receptors on vascular structure. All the results above suggest that VEGF-VEGFR pairs were involved in the process of trophoblast invasion, maternal vascular transformation, and fetoplacental vascular differentiation and development during the rhesus monkey early pregnancy. Expression of VEGF, Flt-1, and KDR in the epithelial cells also hints some additionally functional roles of VEGF during early pregnancy.  相似文献   

6.
Uteri taken from 25 bitches at various times during the early stages of pregnancy were studies cytologically to determine how the implantation chamber developed and how fetal-maternal relations were established. On day 13 after the end of estrus, knobs of trophoblastic syncytium formed and became wedged between cells of the uterine luminal epithelium. The syncytium quickly spread along the uterine lumen and into the mouths of the glands, dislodging and surrounding maternal cells. As invasion continued trophoblastic villi, consisting of cores of cytotrophoblast covered by a continuous layer of syncytium, penetrated deeper into the endometrium. The syncytium spread to surround maternal vessels and decidual cells. By day 26 the trophoblast had extended down to the large lacunae. Here syncytial trophoblast covering tips of the villi degenerated, leaving cytotrophoblast exposed to the necrotic zone. These cells possessed characteristics of absorbing cells. Hematomas were formed by focal necrosis of fetal and endometrial tissue at the poles of the implantation sites. Large pools of extravasated blood accumulated and red blood cells were phagocytized by surrounding trophoblastic cells. Therefore, the endotheliochorial relationship in the canine placenta appeared to be established by syncytial trophoblast invading a cellular endometrium. In the necrotic zone and hematomas, cellular trophoblast may have lost its syncytial covering, but elsewhere maternal vessels and decidual cells in the placenta were in direct contact only with syncytial trophoblast.  相似文献   

7.
The maternal vasculature within the placenta in primates and rodents is unique because it is lined by fetal cells of the trophoblast lineage and not by maternal endothelial cells. In addition to trophoblast cells that invade the uterine spiral arteries that bring blood into the placenta, other trophoblast subtypes sit at different levels of the vascular space. In mice, at least five distinct subtypes of trophoblast cells have been identified which engage maternal endothelial cells on the arterial and venous frontiers of the placenta, but which also form the channel-like spaces within it through a process analogous to formation of blood vessels (vasculogenic mimicry). These cells are all large, post-mitotic trophoblast giant cells. In addition to assuming endothelial cell-like characteristics (endothelial mimicry), they produce dozens of different hormones that are thought to regulate local and systemic maternal adaptations to pregnancy. Recent work has identified distinct molecular pathways in mice that regulate the morphogenesis of trophoblast cells on the arterial and venous sides of the vascular circuit that may be analogous to specification of arterial and venous endothelial cells.  相似文献   

8.

Background  

In human and non-human primates, migratory trophoblasts penetrate the uterine epithelium, invade uterine matrix, and enter the uterine vasculature. Invasive trophoblasts show increased expression of β1 integrin. Since trophoblast migration within the uterine vasculature involves trophoblast attachment to endothelial cells lining the vessel walls, this raises the possibility that cell-cell contact and/or factors released by endothelial cells could regulate trophoblast integrin expression. To test this, we used an in vitro system consisting of early gestation macaque trophoblasts co-cultured on top of uterine microvascular endothelial cells.  相似文献   

9.
abstract

The objective of the present review is to synthesize the information on the cellular and molecular players responsible for maintaining a homeostatic balance between a naturally invasive human placenta and the maternal uterus in pregnancy; to review the roles of decorin (DCN) as a molecular player in this homeostasis; to list the common maladies associated with a break-down in this homeostasis, resulting from a hypo-invasive or hyper-invasive placenta, and their underlying mechanisms. We show that both the fetal components of the placenta, represented primarily by the extravillous trophoblast, and the maternal component represented primarily by the decidual tissue and the endometrial arterioles, participate actively in this balance. We discuss the process of uterine angiogenesis in the context of uterine arterial changes during normal pregnancy and preeclampsia. We compare and contrast trophoblast growth and invasion with the processes involved in tumorigenesis with special emphasis on the roles of DCN and raise important questions that remain to be addressed. Decorin (DCN) is a small leucine-rich proteoglycan produced by stromal cells, including dermal fibroblasts, chondrocytes, chorionic villus mesenchymal cells and decidual cells of the pregnant endometrium. It contains a 40 kDa protein core having 10 leucine-rich repeats covalently linked with a glycosaminoglycan chain. Biological functions of DCN include: collagen assembly, myogenesis, tissue repair and regulation of cell adhesion and migration by binding to ECM molecules or antagonising multiple tyrosine kinase receptors (TKR) including EGFR, IGF-IR, HGFR and VEGFR-2. DCN restrains angiogenesis by binding to thrombospondin-1, TGFβ, VEGFR-2 and possibly IGF-IR. DCN can halt tumor growth by antagonising oncogenic TKRs and restraining angiogenesis. DCN actions at the fetal-maternal interface include restraint of trophoblast migration, invasion and uterine angiogenesis. We demonstrate that DCN overexpression in the decidua is associated with preeclampsia (PE); this may have a causal role in PE by compromising endovascular differentiation of the trophoblast and uterine angiogenesis, resulting in poor arterial remodeling. Elevated DCN level in the maternal blood is suggested as a potential biomarker in PE.  相似文献   

10.
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is one of the scavenger receptors that recognizes oxidized low-density lipoprotein as a major ligand. The placenta is a major source of prooxidant during pregnancy, and the level of placental oxidative stress increases rapidly at the end of the first trimester and tapers off later in gestation. In our study, we evaluated placental expression of LOX-1 during different gestational stages in mice and humans. We used immunohistochemistry and ISH to identify LOX-1-expressing cells in murine and human placentas. In both species, higher expression of LOX-1 mRNA during early to midgestational stages compared with late gestation-corresponding to the increased oxidative stress in early pregnancy-was shown by real-time RT-PCR. In murine placenta, we showed that LOX-1-expressing cells were fibroblast-like stromal cells in metrial glands and decidua basalis and that they were glycogen trophoblast cells in the junctional and labyrinth zones. In the human, LOX-1 expression was detected in villous cytotrophoblasts in both first trimester and term placentas. These localization patterns of LOX-1 in murine and human placentas suggest the possible involvement of LOX-1 in high oxidative stress conditions of pregnancy.  相似文献   

11.
Attachment of the blastocyst and formation of the placenta during pregnancy is dependent on structural and cellular changes occurring in the uterine epithelium and in particular to the plasma membrane of these uterine cells. Desmosome expression decreases during pregnancy in eutherians and some squamates, presumably allowing for remodeling of the uterine epithelium and invasion of the trophoblast during implantation. Marsupials are a distinct mammalian amniote lineage of viviparity, with a short implantation or attachment period and varying levels of invasive placentation. To test the generality of changes to the uterine epithelium during pregnancy across mammals, we characterized the distribution of desmosomes in the uterine epithelial cells of a marsupial, Sminthopsis crassicaudata, using electron microscopy and immunohistochemistry. The absolute number of desmosomes along the lateral plasma membrane decreases during pregnancy and desmosomes are redistributed towards the apical region of the lateral plasma membrane as pregnancy proceeds, similar to what occurs during pregnancy in eutherian mammals. Despite the lower level of maternal investment in pregnancy and the noninvasive structure of fetal membranes in marsupials there are similarities in number and redistribution of desmosomes along the plasma membrane and changes to the morphology of the uterine epithelial cells suggesting that similar plasma membrane changes occur across all lineages of amniote vertebrates. J. Morphol. 276:261–272, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
During pregnancy, VEGF (vascular endothelial growth factor) regulates in part endothelial angiogenesis and vasodilation. In the present study we examine the relative roles of VEGFRs (VEGF receptors) and associated signalling pathways mediating the effects of VEGF(165) on eNOS (endothelial nitric oxide synthase) activation. Despite equal expression levels of VEGFR-1 and VEGFR-2 in UAECs (uterine artery endothelial cells) from NP (non-pregnant) and P (pregnant) sheep, VEGF(165) activates eNOS at a greater level in P- compared with NP-UAEC, independently of Akt activation. The selective VEGFR-1 agonist PlGF (placental growth factor)-1 elicits only a modest activation of eNOS in P-UAECs compared with VEGF(165), whereas the VEGFR-2 kinase inhibitor blocks VEGF(165)-stimulated eNOS activation, suggesting VEGF(165) predominantly activates eNOS via VEGFR-2. Although VEGF(165) also activates ERK (extracellular-signal-regulated kinase)-1/2, this is not necessary for eNOS activation since U0126 blocks ERK-1/2 phosphorylation, but not eNOS activation, and the VEGFR-2 kinase inhibitor inhibits eNOS activation, but not ERK-1/2 phosphorylation. Furthermore, the inability of PlGF to activate ERK-1/2 and the ability of the VEGFR-2 selective agonist VEGF-E to activate ERK-1/2 and eNOS suggests again that both eNOS and ERK-1/2 activation occur predominantly via VEGFR-2. The lack of VEGF(165)-stimulated Akt phosphorylation is consistent with a lack of robust phosphorylation of Ser(1179)-eNOS. Although VEGF(165)-stimulated eNOS phosphorylation is observed at Ser(617) and Ser(635), pregnancy does not significantly alter this response. Our finding that VEGF(165) activation of eNOS is completely inhibited by wortmannin but not LY294002 implies a downstream kinase, possibly a wortmannin-selective PI3K (phosphoinositide 3-kinase), is acting between the VEGFR-2 and eNOS independently of Akt.  相似文献   

13.
Embryonic development of the Chinese hamster (Cricetulus griseus) was studied from the onset of implantation to the formation of the parietal yolk sac placenta. Implantation began on day 6 of pregnancy, when the embryo became fixed to the uterine luminal epithelium. At this time there was no zona pellucida, and microvilli of the trophoblast and uterine epithelium were closely apposed. Stromal cells immediately adjacent to the implantation chamber began to enlarge and accumulate glycogen. By day 7 the mural trophoblast penetrated the luminal epithelium in discrete area. The trophoblast appeared to phagocytize uterine epithelial cells, although epithelium adjoining the points of penetration was normal. In other areas nascent apical protrusions from the uterine epithelium indented the surface of the trophoblast. The epiblast had enlarged and both visceral and parietal endoderm cells were present. The well-developed decidual cells were epithelioid and completely surrounded the implantation chamber. On day 8 the uterine epithelium had disappeared along the mural surface of the embryo. The embryonic cell mass was elongated and filled the yolk sac cavity. Reichert's membrane was well developed. The uterine epithelial basal lamina was largely disrupted, and the trophoblast was in direct contact with decidual cells. Primary and secondary giant trophoblast cells were present and in contact with extravasated maternal blood. The mural trophoblast formed channels in which blood cells were found in close proximity to Reichert's membrane. Decidual cells were in contact with capillary epithelium and in some cases formed part of the vessel wall. Structural changes occurring in the embryo and endometrium during implantation in the Chinese hamster are described for the first time in this report and are compared to those described for some other myomorph rodents.  相似文献   

14.
A member of the vascular endothelial growth factor (VEGF) family, VEGF165, regulates vascular endothelial cell functions in autocrine and paracrine fashions in microvessels. Proteoglycans are highly glycosylated poly-anionic macromolecules that influence cellular behaviors such as proliferation and migration by interacting with cytokines/growth factors. In the present study, we investigated the regulation of proteoglycan synthesis by VEGF165 in cultured human brain microvascular endothelial cells. The cells were exposed to recombinant human VEGF165, and the proteoglycans were then characterized using biochemical techniques. VEGF165 treatment increased the accumulation of proteoglycans 1.4- and 1.6-fold in the cell layer and conditioned medium, respectively. This effect resulted from the activation of VEGFR-2, and was mimicked by vammin, a VEGFR-2 ligand from snake venom but not placenta growth factor, which binds specifically to VEGFR-1. VEGF165 stimulated the production and secretion of perlecan, substituted with shorter heparan sulfate side chains, but with unaltered sulfated disaccharide composition. The perlecan secreted by VEGF165-stimulated endothelial cells may be involved in the regulation of cellular behavior during angiogenesis, in diseases of the brain microvessels, and in the maintenance of the endothelial cell monolayer.  相似文献   

15.
The β-adrenoceptor antagonist Propranolol has been successfully used to treat infantile hemangioma. However, its mechanism of action is so far unknown. The hypothesis of this research was that β-adrenoceptor antagonists may interfere with endothelial cell differentiation of stem cells. Specifically, the effects of the non-specific β-adrenergic receptor (β-adrenoceptor) antagonist Propranolol, the β1-adrenoceptor-specific antagonist Atenolol and the β2-adrenoceptor-specific antagonist ICI118,551 on vasculogenesis of mouse embryonic stem (ES) cells were investigated. All three β-blockers dose-dependently downregulated formation of capillary structures in ES cell-derived embryoid bodies and decreased the expression of the vascular cell markers CD31 and VE-cadherin. Furthermore, β-blockers downregulated the expression of fibroblast growth factor-2 (FGF-2), hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor 165 (VEGF165), VEGF receptor 2 (VEGF-R2) and phospho VEGF-R2, as well as neuropilin 1 (NRP1) and plexin-B1 which are essential modulators of embryonic angiogenesis with additional roles in vessel remodelling and arteriogenesis. Under conditions of β-adrenoceptor inhibition, the endogenous generation of nitric oxide (NO) as well as the phosphorylation of endothelial nitric oxide synthase (eNOS) was decreased in embryoid bodies, whereas an increase in NO generation was observed with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Consequently, vasculogenesis of ES cells was restored upon treatment of differentiating ES cells with β-adrenoceptor antagonists in the presence of NO donor. In summary, our data suggest that β-blockers impair vasculogenesis of ES cells by interfering with NO generation which could be the explanation for their anti-angiogenic effects in infantile hemangioma.  相似文献   

16.
Vascular development and its transformation are necessary for successful hemochorial placentation, and vascular endothelial growth factor (VEGF), angiopoietins, and their receptors may be involved in the molecular regulation of this process. To determine the potential role of these putative regulators in a widely studied primate, the common marmoset, we investigated their mRNA expression and protein location in the placenta throughout pregnancy using in situ hybridization, Northern blot analysis, and immunocytochemistry. VEGF was localized in decidual and cytotrophoblast cells, and its highest expression was found in the maternal decidua. The Flt receptor was exclusively detected in the syncytial trophoblast with increasing expression in placentae from 10 wk to term. Soluble Flt (sFlt) was also detectable by Northern blot analysis. KDR receptor expression was restricted to mesenchymal cells during early placentation and to the fetoplacental vasculature during later placentation. KDR expression increased throughout pregnancy. Angiopoietin-1 (Ang-1) was localized in the syncytial trophoblast, being highly expressed in the second half of gestation. Ang-2 mRNA localized exclusively to maternal endothelial cells, and was highly expressed in 10-wk placentae. The Tie-2 receptor was found in cytotrophoblast cells and in fetal and maternal vessels. High Tie-2 levels were detected in the wall of chorion vessels at 14-wk, 17-wk, and term placentae. These results suggest that the processes of trophoblast invasion, maternal vascular transformation, and fetoplacental vascular differentiation and development are regulated by the specific actions of angiogenic ligand-receptor pairs. Specifically, 1) VEGF/Flt and Ang-1/Tie-2 may promote trophoblast growth, 2) VEGF/KDR and Ang-1/Tie-2 may support fetoplacental vascular development and stabilization, 3) sFlt may balance VEGF actions, and 4) Ang-2/Tie-2 may remodel the maternal vasculature.  相似文献   

17.
Vascular endothelial growth factor (VEGF) is a major mediator of vasculogenesis and angiogenesis both during development and in pathological conditions. VEGF has a variety of effects on vascular endothelium, including the ability to stimulate endothelial cell mitogenesis, and the potent induction of vascular permeability. These activities are at least in part mediated by binding to two high affinity receptors, VEGFR-1 and VEGFR-2. In this study we have made mutations of mouse VEGF in order to define the regions that are required for VEGFR-2-mediated functions. Development of a bioassay, which responds only to signals generated by cross-linking of VEGFR-2, has allowed evaluation of these mutants for their ability to activate VEGFR-2. One mutant (VEGF0), which had amino acids 83-89 of VEGF substituted with the analogous region of the related placenta growth factor, demonstrated significantly reduced VEGFR-2 binding compared with wild type VEGF, indicating that this region was required for VEGF-VEGFR-2 interaction. Intriguingly, when this mutant was evaluated in a Miles assay for its ability to induce vascular permeability, no difference was found when compared with wild type VEGF. In addition we have shown that the VEGF homology domain of the structurally related growth factor VEGF-D is capable of binding to and activating VEGFR-2 but has no vascular permeability activity, indicating that VEGFR-2 binding does not correlate with permeability activity for all VEGF family members. These data suggest different mechanisms for VEGF-mediated mitogenesis and vascular permeability and raise the possibility of an alternative receptor mediating vascular permeability.  相似文献   

18.
19.
Carbonic anhydrase (CA) facilitates acid-base transport in several tissues. Acidosis upregulates membrane-bound SDS-resistant hydratase activity in various tissues and CA IV mRNA in rabbit kidney. This study was designed to assess whether the expression of membrane-bound CA IV isozyme in mouse placenta is regulated developmentally and by maternal ammonium chloride loading at the end of pregnancy. For this purpose we used Northern blot analysis, Western blots of microsomal membranes, and immunocytochemistry. The expression of CA IV mRNA on Northern blots tripled from day 11 to day 15 and then remained stable until the end of pregnancy. Expression of CA IV immunoreactive protein on Western blot tripled from day 11 to day 15 and decreased almost to baseline by day 19. Strong staining for CA IV was detected by immunocytochemistry in labyrinthine trophoblast, in the endodermal layer of the yolk sac (both intra- and extraplacental) and in the uterine epithelium. Weak staining was observed in most fetal endothelial cells at 11 days but not later in gestation. Maternal acidosis did not upregulate the expression of CA IV mRNA or CA IV immunoreactive protein. Thus CA IV expression in mouse placenta is developmentally regulated. Maternal acidosis during the last quarter of pregnancy does not upregulate CA IV mRNA or CA IV immunoreactive protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号