首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Concentrations of circulating hormones after Day 14 (Day 0 = ovulation) were determined daily in 87 interovulatory intervals (IOIs) in heifers. The IOIs were grouped into four permutations according to an ipsilateral (Ipsi) or contralateral (Contra) relationship between the CL and the preovulatory follicle and two (2W) or three (3W) follicular waves per IOI. The number of IOIs per group differed (P < 0.005) from equality among the Ipsi-2W (n = 27), Contra-2W (n = 31), Ipsi-3W (n = 9), and Contra-3W (n = 20) groups. A continuous decrease in progesterone (luteolysis) began later (P < 0.05) in the Contra-3W group (Day 18.0 ± 0.4) than in each of the Ipsi-2W (15.4 ± 0.2), Contra-2W (15.6 ± 0.2), and Ipsi-3W (16.2 ± 0.5) groups. Concentrations of LH and estradiol began to increase near the beginning of luteolysis in each group. A minor FSH surge that did not stimulate a major follicular wave developed in about 50% of the IOIs in each group, except that none were detected in the Ipsi-3W group. The minor FSH surge reached a peak about 4 days before ovulation and several days after wave 3 had emerged. The hypothesis that luteolysis begins earliest in two-wave IOIs, intermediate in three-wave IOIs with an ipsilateral CL/follicle relationship, and latest in three-wave IOIs with a contralateral relationship was supported. The hypothesis that a minor FSH surge occurs most frequently in association with three follicular waves was not supported.  相似文献   

2.
In two experiments, PGF(2alpha) was given to all mares on Day 10 (ovulation = Day 0). In experiment 1, mares received either whole follicular fluid or saline i.v. every 12 hours on Days 10 to 14. Experiment 2 was similar to experiment 1, except the follicular fluid was extracted with charcoal to remove steroids. Analysis of the FSH data for Days 10 to 21 indicated an effect of treatment (P<0.08) with whole follicular fluid, but not with charcoal-extracted follicular fluid. However, there was an effect of day (P<0.05) and an interaction (P<0.01) of treatment with day for both experiments. The interaction of treatment with day seemed primarily due to a marked post-treatment increase in FSH concentrations between Days 15 and 17 for mares treated with either whole follicular fluid or charcoal-extracted follicular fluid. Analysis of the diameter of the largest follicle for Days 10 to 18 indicated a main effect of treatment (P<0.05) and day (P<0.05) and an interaction (P<0.05) of treatment with day for both experiments. The interaction of treatment with day was attributable to the inhibition of follicular growth by Day 14 for mares treated with whole follicular fluid and by Day 15 for mares treated with charcoal-extracted follicular fluid. The length of the interovulatory interval was longer (P<0.05) in the treated group than in controls for both experiments. Results indicated that equine follicular fluid contained a proteinaceous substance that suppressed circulating concentration of FSH. The inhibited follicular growth and the delay in ovulation were attributed to the reduced concentrations of circulating FSH.  相似文献   

3.
《Theriogenology》2016,85(9):1463-1471
The persistence and outcome of 3-mm follicles before the emergence of follicular wave 1 were studied every 6 hours in 15 heifers beginning on Day 14 (Day 0 = ovulation). A mean of 9.1 ± 1.3 persistent 3-mm follicles (P3Fs) per heifer was detected with persistence for 3.5 ± 0.1 days. The P3Fs either regressed continuously and remained in the 3-mm range (3.0–3.9 mm) or regressed but with a transient increase in diameter during regression. Some (43%) P3Fs were rescued to become growing follicles in wave 1. The number of follicles that became part of wave 1 was less (P < 0.0001) for follicles that originated from a P3F (4.2 ± 1.0 P3Fs) than for follicles that did not originate from a P3F (11.9 ± 1.6 follicles). The day of rescue of wave 1 follicles from a P3F (Day −1.1 ± 0.6) was earlier (P < 0.001) than for emergence of follicles at 3 mm that did not originate from a P3F (Day −0.5 ± 0.5). A cluster of 5.1 ± 0.6 P3Fs was identified in 10 of 15 heifers by the synchronized peaks of transient diameter increases at the 6-hour interval corresponding to Day −4.0 ± 0.3. Concentrations of FSH oscillated at 12-hour intervals with a peak (P < 0.05) 6 hours before and 6 hours after the beginning of a transient diameter increase during a P3F. Concentration of FSH was greater (P < 0.02) in heifers with a high number (11–18) of P3Fs per heifer (0.27 ± 0.02 ng/mL) than with a low number (2–9) per heifer (0.17 ± 0.008 ng/mL). Results supported the novel hypothesis that 3-mm follicles may persist for two or more days and may be rescued to become growing follicles of wave 1.  相似文献   

4.
The diameter of the dominant follicle (DF) of wave 1 was studied on Days 9 to 17 (Day 0 = ovulation) in a survey of the ipsilateral and contralateral relationships between the location of the DF and CL, and number of follicular waves per interovulatory interval (IOI). For contralateral relationships, regardless of number of waves the diameter of the DF of wave 1 decreased (P < 0.03) between Days 11 and 13 when referenced to the follicle–CL relationship of wave 1 and decreased (P < 0.008) between Days 9 and 11 when referenced to the preovulatory follicle (PF)–CL relationship. For wave 2 in two-wave IOIs, the CL ovary of ipsilateral relationships had more (P < 0.05) follicles that reached at least 6 mm than the non-CL ovary. In three-wave IOIs, frequency of IOIs with the DF in the CL ovary was greater (P < 0.02) for wave 2 than for wave 3. In wave 3, the preovulatory and the largest subordinate follicles were located more frequently (P < 0.005) in the contralateral ovary. Ovulation in two-wave IOIs occurred more frequently (P < 0.0009) from the right ovary. In three-wave IOIs with a contralateral relationship ovulation occurred more frequently (P < 0.003) from the left ovary; a negative intraovarian effect of the CL on location of the PF may account for more ovulations from the left ovary and a reported greater frequency of the contralateral relationship. The hypothesis was supported that the ipsilateral versus contralateral relationship between the PF and CL is affected by the DF–CL relationship during the previous follicular waves and by the number and identity of waves per IOI.  相似文献   

5.
Diameter of follicles was determined every 12 hours and progesterone (P4), FSH, and LH concentrations were determined every 6 hours from Day 12 (Day 0 = ovulation) to the ovulation at the end of the interovulatory interval (IOI). Groups were assigned on the basis of an ipsilateral (Ipsi) versus contralateral (Contra) relationship between the preovulatory follicle and CL and two follicular waves (2W) versus three waves (3W) per IOI. Numbers of IOIs were Ipsi-2W (n = 6), Ipsi-3W (n = 6), and Contra-3W (n = 8). Normalization to the end of luteolysis (day that P4 was closest to 1.0 ng/mL) indicated for the first time that concentrations of P4 and FSH were greater (P < 0.05) in 3W IOIs than in 2W IOIs for the 3 days before the beginning of a P4 decrease. The beginning of a P4 decrease occurred about 5 days and 6 hours after emergence of the preovulatory wave at 6 mm in 2W and 3W IOIs, respectively. On the day of diameter deviation between the future dominant and largest subordinate follicles in wave 3 of 3W IOIs, the future dominant follicle had the following characteristics: (1) distribution of diameters differed (P < 0.01) from unimodality; (2) diameter was greater (P < 0.05) in the Contra-3W group (9.8 ± 0.4 mm) than in the Ipsi-3W group (8.8 ± 0.3 mm); (3) diameter was similar to the diameter at the beginning of the P4 decrease (9.6 ± 0.9 mm); and (4) diameter was as small or smaller than diameter of the largest subordinate in seven of 14 heifers compared with zero of seven heifers in wave 2 of 2W IOIs. The differences involving deviation may be related to a reported greater frequency of the Contra-3W group than Ipsi-3W group. Results supported the hypothesis that emergence of the ovulatory wave occurs well before the beginning of luteolysis in 2W IOIs and near the beginning of luteolysis in 3W IOIs.  相似文献   

6.
In several species, mating reduces the estrous length and advances ovulation. The aim of this study was to determine if multiple matings reduces the estrous length and modifies the moment of ovulation, as well as the estradiol and LH patterns in ewes. The estrous cycle of Corriedale ewes was synchronized, and the onset of receptivity was monitored every 3 h with rams, avoiding mating. At the estrous onset, ewes were assigned to two experimental groups (n=10 each): 1) estrous was monitored every 3 h with a ram avoiding mating (group CON), and 2) a ram was allowed to mate and ejaculate once every 3 h (group MAT). The ovaries were scanned with transrectal ultrasonography and blood samples were collected for measuring 17β-estradiol and LH concentrations every 3 h until ovulation. Estrus was shorter in MAT than CON ewes (24.7 ± 1.5 h vs. 30.4 ± 1.5 h, respectively; P=0.02); the proportion of animals that ovulated before the end of estrus was greater in CON ewes: (9/10 vs. 3/10, P=0.009). The area under the LH curve (AUC) was greater in MAT than CON ewes (36.1 ± 3.5 ng.h-1.mL-1 vs 24.9 ± 3.5 ng.h-1.mL-1 P=0.03). However, MAT ewes had a lower 17β-estradiol AUC than CON ewes (41.0 ± 4.9 pg.h-1.mL-1 vs 59.4 ± 4.9 pg.h-1.mL-1 P=0.01). Mating reduced the estrous length, induced a greater secretion of LH but less total 17β-estradiol secreted and, additionally, ovulation occurred more frequently after the end of estrus in mated ewes.  相似文献   

7.
The intraovarian relationships among dominant follicle (DF), corpus luteum (CL), and number of follicles between Days 0 to 5 (Day 0 = ovulation) in wave 1 (n = 65 waves) and Days 9 to 13 in wave 2 (n = 62) were analyzed in separate experiments in Bos taurus heifers. Ovaries were grouped into intraovarian patterns of DF–CL, DF alone, CL alone, and neither DF nor CL. In wave 1, the pattern frequencies of DF–CL or neither DF nor CL (34% each) were greater (P < 0.0004) than for DF alone or CL alone (16% each). The number of growing follicles ≥5.0 mm, was greater (P < 0.0001) in ovaries with the DF, even when the DF was removed from the tally (P < 0.03). In a factorial analysis of wave 1, there was a positive main effect of DF (3.9 ± 0.2 vs. 2.2 ± 0.2 follicles; P < 0.0001), but the main effect of CL and the interaction of DF and CL were not significant. In a factorial analysis of wave 2, there were more (P < 0.0001) follicles greater than 6 mm in ovaries with a DF when the DF was included and an approaching difference (P < 0.09) when the DF was excluded. The main effect of CL and the interaction of DF and CL were not significant. The hypothesis that both the DF and CL have a positive intraovarian effect on number of follicles in waves 1 and 2 was only partly supported; the DF, but not the CL, had an effect in the factorial analyses. Previous reports in cattle and sheep of a positive intraovarian effect of CL on number of follicles are questionable in that location of the DF was not considered.  相似文献   

8.
There are three or four ovarian follicular waves in the interovulatory interval of cyclic ewes. Each follicular wave is preceded by a transient peak in serum follicle-stimulating hormone (FSH) concentrations. Serum concentrations of estradiol also increase concurrent with the growth of follicle(s) in each wave. In the current study, we investigated the patterns of follicular wave development and characteristics of FSH and estradiol peaks in all follicular waves of the interovulatory interval and after induction of a supraphysiologic FSH peak in cyclic ewes (Ovis aris). In Experiment 1, 19 ewes underwent daily ovarian ultrasonography and blood sampling for a complete interovulatory interval. In Experiment 2, seven ewes received two administrations of ovine FSH (oFSH), 8 h apart (1 μg/kg; sc), at the expected time of the endogenous FSH peak preceding the second follicular wave of the interovulatory interval. In Experiment 1, the amplitude of the FSH peaks decreased (up to 50%), whereas basal serum FSH concentrations increased across the interovulatory interval (P < 0.05). Maximum follicular diameter was greater (P < 0.05) for Wave 1 and the Ovulatory wave (6.0 ± 0.3 and 6.1 ± 0.2 mm, respectively) than for Waves 2 and 3 (5.3 ± 0.1 and 5.4 ± 0.3 mm, respectively). Life span was greater for follicles in Wave 1 compared with other waves (P < 0.05). Treatment with oFSH increased the amplitude of an FSH peak by 5- to 6-fold. This treatment increased estradiol production (P < 0.05) but had little effect on other characteristics of the subsequent follicular wave. We concluded that changes in the amplitude and duration of the peaks in serum concentrations of FSH that precede follicular waves across the interovulatory interval do not influence the characteristics of the follicular waves that follow.  相似文献   

9.
The objective was to evaluate the effect of estradiol benzoate (EB), in association with three progestin protocols, on ovarian follicular regression of suckled beef cows treated at three stages of follicular development (pre-deviation, deviation, or post-deviation). Thirty-six suckled beef cows (60-90 d postpartum, given 125 μg cloprostenol on two occassions, 12 h apart). Forty-eight hours after the first cloprostenol treatment, all follicles >5 mm were ablated and transrectal ultrasound scanning (8 MHz) was performed every 24 h until Day 7 (Day 0 = treatment). When the largest follicle reached a designated diameter of 5-7, 8-10 or >10 mm, cows were randomly allocated to receive 2 mg of EB im in association with an intravaginal device containing 250 mg of medroxyprogesterone acetate (MPA) with or without 100 mg of progesterone (P4) given im, or an intravaginal device containing P4 (3 × 3 factorial design). Treatments induced follicular regression in all cows, independent of follicular stage or treatment. There was no interaction between progestin treatment and follicular stage, nor was there any difference in the time of follicular regression or new wave emergence among follicular stages. Treatment with MPA plus P4 delayed follicular regression. In conclusion, EB in association with various progestins induced regression of growing follicles and emergence of a new follicular wave in postpartum beef cows, regardless of the stage of follicular development.  相似文献   

10.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

11.
Oestrus synchronization following prostaglandin-induced luteolysis is variable and dependent on follicle wave status in cattle. Oestradiol benzoate (ODB) has been used following prostaglandin to reduce the interval to oestrus and ovulation, but the effect of follicle wave status at the time of ODB administration is not clear. The aim of this study was to characterize the endocrine and follicular responses following ODB after luteolysis at different stages of the follicle wave. Prostaglandin was administered at either emergence or dominance of the second follicle wave. Twenty-four hours later animals received either 0.5mg ODB in oil or a control oil injection. Follicular development was monitored daily by ultrasonography, oestrous behavior was determined and blood samples were collected. In animals treated with ODB at emergence, there was a reduction (P<0.05) in the maximum diameter of the ovulatory follicle (11.7+/-1.2 mm versus 13.1+/-0.1 mm) and in the interval from prostaglandin to oestrus (52.0+/-2.3 h versus 88.0+/-9.6h), to the LH surge (53.3+/-3.5 h versus 89.1+/-6.5 h) and to ovulation (96+/-0.0 h versus 129.6+/-9.6h), compared with controls. In animals treated with ODB at dominance, there was a reduction (P<0.05) in the interval from prostaglandin to the LH surge (54.0+/-3.1 h versus 70.9+/-4.8 h), but not in the interval from prostaglandin to oestrus (53.3+/-2.7 h versus 65.7+/-4.5 h; P=0.11), to ovulation (96.0+/-0.0 h versus 110.4+/-4.8 h; P=0.12) or the maximum diameter of the ovulatory follicle (12.7+/-0.3 mm versus 13.6+/-0.4 mm; P=0.12), compared with controls. Treatment did not affect (P>0.05) the length of the subsequent oestrous cycle or corpus luteum size. In conclusion, the use of ODB advanced, but did not alter the temporal relationships among oestrus, the LH surge and ovulation, regardless of stage of follicle development at treatment.  相似文献   

12.
The effects of arginine vasotocin (AVT) on the estrogen-induced surge of LH and FSH were examined in ovariectomized adult rats. Two and one-half weeks after ovariectomy, animals that were treated with a single subcutaneous (s.c.) dose of 5 μg of estradiol benzoate (EB) exhibited a surge of LH and FSH at 1700 and 1900 hours, respectively, two days after the administration of the EB. AVT, antidiuretic hormone (ADH) and oxytocin (OT) were administered s.c. in 1 μg dose every 4 hours beginning at 1500 hours on day 1 after EB treatment and then every 2 hours beginning at 1200 hours on day 2 after EB treatment. AVT completely prevented the LH surge at 1700 hours but was without effect on the FSH surge at 1900 hours on the day 2 after steroid treatment. Neither ADH nor OT had any significant effect on the afternoon surge of these hormones. It is postulated that AVT may interfere with the mechanisms mediating the estrogen-induced afternoon surge of LH in ovariectomized rats.  相似文献   

13.
The effect of administration of d-Trp6-Luteininzing Hormone-Releasing Hormone (LH-RH) on synthesis and degradation of cyclic nucleotides was studied in the rat. There were no significant changes in the rate of synthesis and degradation of cyclic AMP in the ovary, testis and pituitary gland of d-Trp6 LH-RH-treated rats as compared to controls. On the other hand, the levels of cyclic GMP and activity of guanylate cyclase were significantly higher in the ovary and testis as well as in the pituitary gland of animals which received the analog. The rate of hydrolysis of cyclic GMP was unchanged by the administration of d-Trp6-LH=RH. Interestingly, the cyclic CMP phosphodiesterase seemed to be activated in animals treated with d-Trp6-LH-RH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号