首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the alterations in serum heat shock protein (Hsp) 70 levels during a 15-consecutive-day intermittent heat–exercise protocol in a 29-year-old male ultra marathon runner. Heat acclimation, for the purpose of physical activities in elevated ambient temperatures, has numerous physiological benefits including mechanisms such as improved cardiac output, increased plasma volume and a decreased core temperature (T c). In addition to the central adaptations, the role of Hsp during heat acclimation has received an increasing amount of attention. The acclimation protocol applied was designed to correspond with the athlete’s tapering period for the 2007 Marathon Des Sables. The subject (VO2max = 50.7 ml·kg−1·min−1, peak power output [PPO] = 376 W) cycled daily for 90 min at a workload corresponding to 50% of VO2max in a temperature-controlled room (average WBGT = 31.9 ± 0.9°C). Venous blood was sampled before and after each session for measurement of serum osmolality and serum Hsp70. In addition, T c, heart rate (HR) and power output (PO) was measured throughout the 90 min to ensure that heat acclimation was achieved during the 15-day period. The results show that the subject was successfully heat acclimated as seen by the lowered HR at rest and during exercise, decreased resting and exercising T c and an increased PO. The heat exercise resulted in an initial increase in Hsp70 concentrations, known as thermotolerance, and the increase in Hsp70 after exercise was inversely correlated to the resting values of Hsp70 (Spearman’s rank correlation = −0.81, p < 0.01). Furthermore, the 15-day heat–exercise protocol also increased the basal levels of Hsp70, a response different from that of thermotolerance. This is, as far as we are aware, the first report showing Hsp70 levels during consecutive days of intermittent heat exposure giving rise to heat acclimation. In conclusion, a relatively longer heat acclimation protocol is suggested to obtain maximum benefit of heat acclimation inclusive of both cellular and systemic adaptations.  相似文献   

2.
Magoń A  Pyda M 《Carbohydrate research》2011,346(16):2558-2566
The thermal behaviors of α-D-glucose in the melting and glass transition regions were examined utilizing the calorimetric methods of standard differential scanning calorimetry (DSC), standard temperature-modulated differential scanning calorimetry (TMDSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-TMDSC), and thermogravimetric analysis (TGA). The quantitative thermal analyses of experimental data of crystalline and amorphous α-D-glucose were performed based on heat capacities. The total, apparent and reversingheat capacities, and phase transitions were evaluated on heating and cooling. The melting temperature (T(m)) of a crystalline carbohydrate such as α-D-glucose, shows a heating rate dependence, with the melting peak shifted to lower temperature for a lower heating rate, and with superheating of around 25K. The superheating of crystalline α-D-glucose is observed as shifting the melting peak for higher heating rates, above the equilibrium melting temperature due to of the slow melting process. The equilibrium melting temperature and heat of fusion of crystalline α-D-glucose were estimated. Changes of reversing heat capacity evaluated by TMDSC at glass transition (T(g)) of amorphous and melting process at T(m) of fully crystalline α-D-glucose are similar. In both, the amorphous and crystalline phases, the same origin of heat capacity changes, in the T(g) and T(m) area, are attributable to molecular rotational motion. Degradation occurs simultaneously with the melting process of the crystalline phase. The stability of crystalline α-D-glucose was examined by TGA and TMDSC in the melting region, with the degradation shown to be resulting from changes of mass with temperature and time. The experimental heat capacities of fully crystalline and amorphous α-D-glucose were analyzed in reference to the solid, vibrational, and liquid heat capacities, which were approximated based on the ATHAS scheme and Data Bank.  相似文献   

3.
In vivo effects of thymopentin, an active fragment of the naturally occurring thymic hormone thymopoietin, on the production of cytokines, nitric oxide, heat shock proteins, and signaling proteins NF-κB, phNF-κB, and IκB-α in lymphoid cells of male NMRI mice was studied. Activation of production of several cytokines (IL-1α, IL-2, IL-6, IL-10, and IFN-γ), nitric oxide, and heat shock proteins (HSP70 and HSP90) was observed in peritoneal macrophages and spleen lymphocytes of mice that received intraperitoneal injections of thymopentin (15μg per 100 g body weight). Thymopentin apparently produces stress-like rather than damaging effects. A probable action mechanism of this hormone is activation of the NF-κB signaling pathway, which is most pronounced at the NF-κB phosphorylation stage.  相似文献   

4.
1. 1. The thermal death point of the water flea Daphnia magna (age < 24 h, cultured at 20°C) varied considerably depending on the method used. The median lethal dose (LD50), induced by an acute 24 h heat exposure was 34.8°C. It was 37.8°C following a thermal shock for 15 min, and it was 39.4°C when a continuous temperature increase (0.2°C/min) was used.
2. 2. Heat death temperature of daphnids was related to the acute heating rate.
3. 3. The logarithm of median lethal time (Lt50) of daphnids, kept at a constant high temperature, had a linear relationship to temperature (°C) within the range of 28.0–38.5°C.
4. 4. The mortality after heat exposure increased with recovery time at 20°C for up to 3 days.
5. 5. The animals which survived the heat exposure produced eggs and offspring. Furthermore, no time lag in development between the control and heat exposure group was observed.
6. 6. The comparison of the results made by different heat tests categorized to Methods 1 and 2 by Precht (1973), for use in the determination of lethal limits of ectotherms, has been discussed.
  相似文献   

5.
β-Alanine exhibits neurotransmitter activity and is a component of the anti-glycation agent carnosine. We propose that β-alanine may have additional properties which may be of physiological significance. Interestingly, stress modulates the level of β-alanine, which regulates excitotoxicity responses and prevents neuronal cell death. We hypothesize that β-alanine's protective role may involve preservation of enzyme structure and function, suggesting that β-alanine may act as a chemical chaperone. We used light scattering, enzyme activity and intrinsic fluorescence to monitor heat-induced changes in lactate dehydrogenase (LDH) in the presence and absence of β-alanine. We observed that β-alanine suppressed heat-induced LDH inactivation, prevented LDH aggregation, ameliorated the decrease in intrinsic fluorescence and reactivated thermally denatured LDH. These observations support the hypothesis that β-alanine has chaperone-like activity and may play a cellular role in the preservation of enzyme function.  相似文献   

6.
The temperature–mortality relationship follows a well-known J-V shaped pattern with mortality excesses recorded at cold and hot temperatures, and minimum at some optimal value, referred as Minimum Mortality Temperature (MMT). As the MMT, which is used to measure the population heat-tolerance, is higher for people living in warmer places, it has been argued that populations will adapt to temperature changes. We tested this notion by taking advantage of a huge migratory flow that occurred in Italy during the 1950s, when a large number of unemployed people moved from the southern to the industrializing north-western regions. We have analyzed mortality–temperature relationships in Milan residents, split by groups identified by area of birth. In order to obtain estimates of the temperature-related risks, log-linear models have been used to fit daily death count data as a function of different explanatory variables. Results suggest that mortality risks differ by birthplace, regardless of the place of residence, namely heat tolerance in adult life could be modulated by outdoor temperature experienced early in life. This indicates that no complete adaptation might occur with rising external environmental temperatures.  相似文献   

7.
8.
9.
S E Bradley  P J Fryer 《Biofouling》2013,29(4):295-314

Fouling cannot always be prevented; it is important to consider the design of fouling‐resistant heat exchangers. To examine these exchangers, a test fluid whose fouling behaviour is understood should be used. Experiments have been conducted to examine the response of two model systems, a pulsatile flow and a fluid bed heat exchanger, to fouling from whey protein concentrates. Both systems are effective in certain cases, although the enhanced mass transfer possible in the pulsatile flow exchanger can increase fouling when mass transfer controls deposition. This demonstrates the possible danger in installing “antifouling”; systems. The possible mechanisms by which antifouling exchangers operate is discussed; they may work both by slowing the kinetics of fouling or enhancing the heat transfer coefficient. A simple model to demonstrate the design of antifouling exchangers is presented.  相似文献   

10.
The existence of stressor-specific induction programs of heat shock proteins (hsps) leads us to analyze the possible occurrence of a stressor-specific tolerance induced by either heat shock, arsenite, or cadmium. As a measure of this tolerance re-induction of hsps was studied. In this paper, we tested whether the refractory state is either valid for each specific hsp (implying independent regulation of every member of the heat shock protein family) or extends from small subsets of the hsp-family to even larger groups of proteins (indicating a more common denominator in their regulation). (Re-)induction of hsps does not seem to be regulated at the level of each individual hsp since differences in induced synthesis of hsps between two stressor conditions are not supplemented systematically upon the sequential application of the two stressors. The most notable example in this respect is hsp60. A pretreatment with cadmium, which hardly induces synthesis of this hsp, does induce a tolerance to (re)-induction by heat shock, which normally induces hsp60. This suggests the existence of a more common denominator regulating the coordinate expression of at least some hsps. From our data we conclude that the degree, but not the pattern, of hsp re-induction is influenced by the type of stressor used in the pretreatment. The pattern of hsps induced by a secondary applied stressor still shows most of its stressor-specificity and seems to be independent of any pretreatment. The possible implications of stressor-specificity are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

11.
12.
Reproductive development in sexual plants is substantially more sensitive to high temperature stress than vegetative development, resulting in negative implications for food and fiber production under the moderate temperature increases projected to result from global climate change. High temperature exposure either during early pollen development or during the progamic phase of pollen development will negatively impact pollen performance and reproductive output; both phases of pollen development are considered exceptionally sensitive to moderate heat stress. However, moderately elevated temperatures either before or during the progamic phase can limit fertilization by negatively impacting important pollen pistil interactions required for successful pollen tube growth toward the ovules. This mini-review identifies the impacts of heat stress on pollen-pistil interactions and sexual reproduction in angiosperms. A special emphasis is placed on the biochemical response of the pistil to moderately high temperature and the resultant influence on in vivo pollen performance and fertilization.Key words: pollen-pistil interaction, carbohydrates, heat stress, fertilization, pollen tube growth, climate changeSexual reproduction is substantially more sensitive to moderately high temperature stress than vegetative processes.1 Consequently, the yield of crops with valuable reproductive structures used for food (i.e., grain crops and horticultural crops) and fiber (i.e., cotton) would be especially sensitive to moderately elevated temperatures projected to result from global climate change. Sexual reproduction in angiosperms occurs in essentially three stages: gametophyte development (from meiosis to pollination), the progamic phase (from pollination to zygote formation) and embryo development (from zygote to seed).2 During the pro-gamic phase, a number of reproductive processes must occur in a highly concerted fashion for successful fertilization to occur. (1) Anther dehiscence allows mature pollen grains to be transferred to a receptive stigmatic surface; (2) pollen grains germinate and pollen tubes penetrate the stigmatic surface of the pistil; (3) pollen tubes grow through the transmitting tissue of the style and towards a sexually competent ovule; finally, (4) double fertilization produces a zygote and its associated endosperm. Inhibition of any one of the aforementioned processes during the progamic phase, will necessarily limit seed development.3Although the timing and precise coordination of events during the progamic phase are strongly determined by genotype and occur in a unique and well-defined manner for a given species,4 the environment encountered either before or during the pro-gamic phase also exerts considerable control over the fertilization process, and can strongly influence reproductive success.5 Consequently, high temperature has been shown to substantially limit fertilization in vivo.5 Depending upon the timing, duration and severity, heat stress can limit fertilization5 by (1) inhibiting male6 and female5,7 gametophyte development, (2) inhibiting pollen germination,6,8,9 (3) limiting pollen tube growth,811 or (4) by altering the development of tissues required to carry out reproductive processes (i.e., anther and pistil tissues).1 Although the existing literature concerning heat stress and reproductive development in sexual plants is exhaustive (reviewed in ref. 1 and 2), the approaches used by various investigators to elucidate plant reproductive responses to high temperature vary substantially from study to study. Consequently, it is the aim of this review to characterize the impact of timing, duration and severity of heat stress on sexual processes occurring during the progamic phase. A special emphasis is placed on the biochemical response of the pistil to moderately high temperature and the resultant influence on in vivo pollen performance.  相似文献   

13.
α-Crystallin-type small heat shock proteins (sHsps) are expressed in many bacteria, animals, plants, and archaea. Among mycoplasmas (Mollicutes), predicted sHsp homologues so far were found only in the Acholeplasmataceae family. In this report, we describe the cloning and functional characterization of a novel sHsp orthologue, IbpA protein, present in Acholeplasma laidlawii. Importantly, similar to the endogenously expressed sHsp proteins, the recombinant IbpA protein was able to spontaneously generate oligomers in vitro and to rescue chemically denatured bovine insulin from irreversible denaturation and aggregation. Collectively, these data suggest that IbpA is a bona fide member of the sHsps family. The immune-electron microscopy data using specific antibodies against IbpA have revealed different intracellular localization of this protein in A. laidlawii cells upon heat shock, which suggests that IbpA not only may participate in the stabilization of individual polypeptides, but may also play a protective role in the maintenance of various cellular structures upon temperature stress.  相似文献   

14.
Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. ‘Schneiders späte Knorpelkirsche’ trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. ‘Schneiders späte Knorpelkirsche’ cherries at Bonn exhibited a chilling requirement of 68.6?±?5.7 chill portions (or 1,375?±?178 chilling hours or 1,410?±?238 Utah chill units) and a heat requirement of 3,473?±?1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package (‘chillR’) and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. ‘Payne’) at Davis, California.  相似文献   

15.
The fibrillization of α-synuclein (α-syn) is a key event in the pathogenesis of α-synucleinopathies. Mutant α-syn (A53T, A30P, or E46K), each linked to familial Parkinson's disease, has altered aggregation properties, fibril morphologies, and fibrillization kinetics. Besides α-syn, Lewy bodies also contain several associated proteins including small heat shock proteins (sHsps). Since α-syn accumulates intracellularly, molecular chaperones like sHsps may regulate α-syn folding and aggregation. Therefore, we investigated if the sHsps αB-crystallin, Hsp27, Hsp20, HspB8, and HspB2B3 bind to α-syn and affect α-syn aggregation. We demonstrate that all sHsps bind to the various α-syns, although the binding kinetics suggests a weak and transient interaction only. Despite this transient interaction, the various sHsps inhibited mature α-syn fibril formation as shown by a Thioflavin T assay and atomic force microscopy. Interestingly, HspB8 was the most potent sHsp in inhibiting mature fibril formation of both wild-type and mutant α-syn. In conclusion, sHsps may regulate α-syn aggregation and, therefore, optimization of the interaction between sHsps and α-syn may be an interesting target for therapeutic intervention in the pathogenesis of α-synucleinopathies.  相似文献   

16.

1. 1.|When Chinese hamster ovary cells are treated with cycloheximide (10 μg/ml) or puromycin (100 μg/ml) for 2 h before and during heating at 43°C for 3 h, there is protection from hyperthermic killing; i.e. the plating efficiency increases 2000-fold from 3.7 × 10−5 to (6–9) × 10−2.

2. 2.|The total intracellular levels of spermidine and spermine are not altered by the hyperthermic or drug treatments.

3. 3.|The small 30% decrease in intracellular putrescine observed after heating is not altered by drug treatment.

4. 4.|Heat protection by treatment with cycloheximide or puromycin cannot be attributed to changes in levels of total intracellular polyamines.

Author Keywords: Heat protection; cycloheximide; puromycin; putrescine; spermidine; spermine  相似文献   


17.

Background  

Monocytes, their progeny such as dendritic cells and osteoclasts and products including tumor necrosis factor (TNF)-α, interleukin (IL)-1α and IL-1β play important roles in cancer, inflammation, immune response and atherosclerosis. We previously showed that mactinin, a degradative fragment of the cytoskeletal protein α-actinin, is present at sites of monocytic activation in vivo, has chemotactic activity for monocytes and promotes monocyte/macrophage maturation. We therefore sought to determine the mechanism by which mactinin stimulates monocytes.  相似文献   

18.
19.
Seven members of the small heat shock protein (sHSP) family are exceptional with respect to their constitutive high abundance in muscle tissue. It has been suggested that sHSPs displaying chaperone-like properties may stabilize myofibrillar proteins during stress conditions and prevent them from loss of function. In the present study five sHSPs (B-crystallin, MKBP, HSP25, HSP20, and cvHSP) were investigated with respect to similarities and differences of their expression in heart and skeletal muscle under normal and ischemic conditions. In ischemic heart and skeletal muscle these five sHSPs translocated from cytosol to the Z-/I-area of myofibrils. Myofibrillar binding of all sHSPs was very tight and resisted for the most part extraction with 1 M NaSCN or 1 M urea. MKBP and HSP20 became extracted by 1 M NaSCN to a significant extent indicating that these two sHSPs may bind partially to actin-associated proteins which were completely extracted by this treatment. Ultrastructural localization of B-crystallin showed diffuse distribution of immunogold label throughout the entire I-band in skeletal muscle fibers whereas in cardiomyocytes B-crystallin was preferentially located at the N-line position of the I-band. These observations indicate different myofibrillar binding sites of B-crystallin in cardiomyocytes versus skeletal muscle fibers. Further differences of the properties of sHSPs could be observed regarding fiber type distribution of sHSPs. Thus sHSPs form a complex stress–response system in striated muscle tissue with some common as well as some distinct functions in different muscle types.  相似文献   

20.
Summary An extracellular -amylase has been isolated from a continuous culture of a thermophilic strain of Bacillus brevis. This enzyme was purified eightfold and obtained in electrophoretically homogenous form. The enzyme had a molecular weight of about 58000, a pH optimum from 5.0 to 9.0 and a temperature optimum at 80°C. The half-life of the purified enzyme in the presence of 5 mM CaCl2 at 90° C and pH 8.0 was 20 min. The K m value for soluble starch was calculated to be 0.8 mg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号