首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The bacterial cell-division protein FtsA anchors FtsZ to the cytoplasmic membrane. But how FtsA and FtsZ interact during membrane division remains obscure. We have solved 2.2 Å resolution crystal structure for FtsA from Staphylococcus aureus. In the crystals, SaFtsA molecules within the dimer units are twisted, in contrast to the straight filament of FtsA from Thermotoga maritima, and the half of S12–S13 hairpin regions are disordered. We confirmed that SaFtsZ and SaFtsA associate in vitro, and found that SaFtsZ GTPase activity is enhanced by interaction with SaFtsA.  相似文献   

3.
A plethora of RNAs with regulatory functions has been discovered in many non-pathogenic and pathogenic bacteria. In Staphylococcus aureus, recent findings show that a large variety of RNAs control target gene expression by diverse mechanisms and many of them are expressed in response to specific internal or external signals. These RNAs comprise trans-acting RNAs, which regulate gene expression through binding with mRNAs, and cis-acting regulatory regions of mRNAs. Some of them possess multiple functions and encode small but functional peptides. In this review, we will present several examples of RNAs regulating pathogenesis, antibiotic resistance, and host-pathogen interactions and will illustrate how regulatory proteins and RNAs form complex regulatory circuits to express the virulence factors in a dynamic manner.  相似文献   

4.
5.
It is widely accepted that β-lactam antimicrobials cause cell death through a mechanism that interferes with cell wall synthesis. Later studies have also revealed that β-lactams modify the autolysis function (the natural process of self-exfoliation of the cell wall) of cells. The dynamic equilibrium between growth and autolysis is perturbed by the presence of the antimicrobial. Studies with Staphylococcus aureus to determine the minimum inhibitory concentration (MIC) have revealed complex responses to methicillin exposure. The organism exhibits four qualitatively different responses: homogeneous sensitivity, homogeneous resistance, heterogeneous resistance and the so-called ‘Eagle-effect’. A mathematical model is presented that links antimicrobial action on the molecular level with the overall response of the cell population to antimicrobial exposure. The cell population is modeled as a probability density function F(x,t) that depends on cell wall thickness x and time t. The function F(x,t) is the solution to a Fokker-Planck equation. The fixed point solutions are perturbed by the antimicrobial load and the advection of F(x,t) depends on the rates of cell wall synthesis, autolysis and the antimicrobial concentration. Solutions of the Fokker-Planck model are presented for all four qualitative responses of S. aureus to methicillin exposure.  相似文献   

6.
Multiple interactions between human vitronectin and Staphylococcus aureus strain V8 were observed. An upward-curved Scatchard plot indicated both high-affinity binding (Kd1 = 7.4 · 10?10 M) with 260 binding sites per bacterial cell and moderate-affinity binding (Kd2 = 7.4 · 10?8 M) with 5240 copies per cell. Negative cooperativity of this binding was characterized by its Hill coeffiocient of less than unity (0.70 ± 0.08). Up to 60% of the vitronectin-bacteria interaction was unaffected by high ionic strength (i.e., 2.4 M NaCl), and was not inhibited by highly-charged heparin oligosaccharides. Various oligosaccharides (4–20 monosaccharide units) generated by partial deaminative cleavage of heparin were found to affect vitronectin binding to S. aureus. Short-chain-length oligosaccharides increase and long oligosaccharides inhibit vitronectin binding, in accordance with direct association of these saccharides with multimeric vitroectin. A protein having a molecular mass of 60 kDa was identified as a putative high-affinity staphylococcal vitronectic-binding protein. These results indicate that interaction of multimeric vitronectin, mostly present at extracellular matrix sites with multiple recognition sites on the S. aureus surface, may contribute to bacterial colonisation.  相似文献   

7.
Incorporation of halogen atoms to drug molecule has been shown to improve its properties such as enhanced in membrane permeability and increased hydrophobic interactions to its target. To investigate the effect of halogen substitutions on the antibacterial activity of trimethoprim (TMP), we synthesized a series of halogen substituted TMP and tested for their antibacterial activities against global predominant methicillin resistant Staphylococcus aureus (MRSA) strains. Structure-activity relationship analysis suggested a trend in potency that correlated with the ability of the halogen atom to facilitate in hydrophobic interaction to saDHFR. The most potent derivative, iodinated trimethoprim (TMP-I), inhibited pathogenic bacterial growth with MIC as low as 1.25?μg/mL while the clinically used TMP derivative, diaveridine, showed resistance. Similar to TMP, synergistic studies indicated that TMP-I functioned synergistically with sulfamethoxazole. The simplicity in the synthesis from an inexpensive starting material, vanillin, highlighted the potential of TMP-I as antibacterial agent for MRSA infections.  相似文献   

8.
It is proposed that staphylococcal delta-lysin, a membrane-damaging peptide of 26 residues adopts an α-helical rod-like configuration with separate hydrophilic and hydrophobic faces. Association of six such monomers in a cell membrane may result in the formation of a transmembrane “pore” lined by the hydrophilic faces of the monomers.  相似文献   

9.
We recently discovered RnpA as a promising new drug discovery target for methicillin-resistant S. aureus (MRSA). RnpA is an essential protein that is thought to perform two required cellular processes. As part of the RNA degrasome Rnpa mediates RNA degradation. In combination with rnpB it forms RNase P haloenzymes which are required for tRNA maturation. A high throughput screen identified RNPA2000 as an inhibitor of both RnpA-associated activities that displayed antibacterial activity against clinically relevant strains of S. aureus, including MRSA. Structure-activity studies aimed at improving potency and replacing the potentially metabotoxic furan moiety led to the identification of a number of more potent analogs. Many of these new analogs possessed overt cellular toxicity that precluded their use as antibiotics but two derivatives, including compound 5o, displayed an impressive synergy with mupirocin, an antibiotic used for decolonizing MSRA whose effectiveness has recently been jeopardized by bacterial resistance. Based on our results, compounds like 5o may ultimately find use in resensitizing mupirocin-resistant bacteria to mupirocin.  相似文献   

10.
The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His6-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted l-Ala, l-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for l-Ala. S. aureus MurE was very specific for l-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and l-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (l-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and l-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis.  相似文献   

11.
In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens. However, little is known about the defense mechanisms against Gram-positive bacteria in the fly gut. Here, we show that the peritrophic matrix protects Drosophila against Gram-positive bacteria S. aureus. We also define the few roles of ROS in response to the infection and show that the IMD pathway is required for the clearance of ingested microbes, possibly independently from AMP expression. These findings provide a new aspect of the gut defense system of Drosophila, and helps to elucidate the processes of gut-microbe symbiosis and pathogenesis.  相似文献   

12.
Here we present the use of three fluorescent proteins in Staphylococcus aureus, Cerulean, PA-GFP, and mRFPmars. All molecules have an improved codon adaptation for expression in the A + T rich organisms and extend the fluorescent protein portfolio in staphylococcal research.  相似文献   

13.
14.
Iron is an absolute requirement for nearly all organisms, but most bacterial pathogens are faced with extreme iron-restriction within their host environments. To overcome iron limitation pathogens have evolved precise mechanisms to steal iron from host supplies. Staphylococcus aureus employs the iron-responsive surface determinant (Isd) system as its primary heme-iron uptake pathway. Hemoglobin or hemoglobin-haptoglobin complexes are bound by Near iron-Transport (NEAT) domains within cell surface anchored proteins IsdB or IsdH. Heme is stripped from the host proteins and transferred between NEAT domains through IsdA and IsdC to the membrane transporter IsdEF for internalization. Once internalized, heme can be degraded by IsdG or IsdI, thereby liberating iron for the organism. Most components of the Isd system have been structurally characterized to provide insight into the mechanisms of heme binding and transport. This review summarizes recent research on the Isd system with a focus on the structural biology of heme recognition.  相似文献   

15.

Background

Gram-positive bacteria in the phylum Firmicutes synthesize the low molecular weight thiol bacillithiol rather than glutathione or mycothiol. The bacillithiol transferase YfiT from Bacillus subtilis was identified as a new member of the recently discovered DinB/YfiT-like Superfamily. Based on structural similarity using the Superfamily program, we have determined 30 of 31 Staphylococcus aureus strains encode a single bacillithiol transferase from the DinB/YfiT-like Superfamily, while the remaining strain encodes two proteins.

Methods

We have cloned, purified, and confirmed the activity of a recombinant bacillithiol transferase (henceforth called BstA) encoded by the S. aureus Newman ORF NWMN_2591. Moreover, we have studied the saturation kinetics and substrate specificity of this enzyme using in vitro biochemical assays.

Results

BstA was found to be active with the co-substrate bacillithiol, but not with other low molecular weight thiols tested. BstA catalyzed bacillithiol conjugation to the model substrates monochlorobimane, 1-chloro-2,4-dinitrobenzene, and the antibiotic cerulenin. Several other molecules, including the antibiotic rifamycin S, were found to react directly with bacillithiol, but the addition of BstA did not enhance the rate of reaction. Furthermore, cells growing in nutrient rich medium exhibited low BstA activity.

Conclusions

BstA is a bacillithiol transferase from S. aureus that catalyzes the detoxification of cerulenin. Additionally, we have determined that bacillithiol itself might be capable of directly detoxifying electrophilic molecules.

General significance

BstA is an active bacillithiol transferase from S. aureus Newman and is the first DinB/YfiT-like Superfamily member identified from this organism. Interestingly, BstA is highly divergent from B. subtilis YfiT.  相似文献   

16.
17.
We describe the development and application of a Pooled Suppression Subtractive Hybridization (PSSH) method to describe differences between the genomic content of a pool of clinical Staphylococcus aureus isolates and a sequenced reference strain. In comparative bacterial genomics, Suppression Subtractive Hybridization (SSH) is normally utilized to compare genomic features or expression profiles of one strain versus another, which limits its ability to analyze communities of isolates. However, a PSSH approach theoretically enables the user to characterize the entirety of gene content unique to a related group of isolates in a single reaction. These unique fragments may then be linked to individual isolates through standard PCR. This method was applied to examine the genomic diversity found in pools of S.aureus isolates associated with complicated bacteremia infections leading to endocarditis and osteomyelitis. Across four pools of 10 isolates each, four hundred and twenty seven fragments not found in or significantly divergent from the S. aureus NCTC 8325 reference genome were detected. These fragments could be linked to individual strains within its pool by PCR. This is the first use of PSSH to examine the S. aureus pangenome. We propose that PSSH is a powerful tool for researchers interested in rapidly comparing the genomic content of multiple unstudied isolates.  相似文献   

18.
Solid-state NMR has been used to examine the binding of N′-4-[(4-fluorophenyl)benzyl)]chloroeremomycin, a fluorinated analogue of oritavancin, to isolated protoplast membranes and whole-cell sucrose-stabilized protoplasts of Staphylococcus aureus, grown in media containing [1-13C]glycine and l-[?-15N]lysine. Rotational-echo double-resonance NMR was used to characterize the binding by estimating internuclear distances from 19F of oritavancin to 13C and 15N labels of the membrane-associated peptidoglycan and to the 31P of the phospholipid bilayer of the membrane. In isolated protoplast membranes, both with and without 1 M sucrose added to the buffer, the nascent peptidoglycan was extended away from the membrane surface and the oritavancin hydrophobic side chain was buried deep in the exposed lipid bilayer. However, there was no N′-4-[(4-fluorophenyl)benzyl)]chloroeremomycin binding to intact sucrose-stabilized protoplasts, even though the drug bound normally to the cell walls of whole cells of S. aureus in the presence of 1 M sucrose. As shown by the proximity of peptidoglycan-bridge 13C labels to phosphate 31P, the nascent peptidoglycan of the intact protoplasts was confined to the membrane surface.  相似文献   

19.
Systems biology studies assume the acquisition of reliable and reproducible data sets. Metabolomics, in particular, requires comprehensive evaluated workflows to enable the analysis of hundreds of different compounds. Therefore, a protocol to elucidate the metabolome of the gram-positive pathogen, Staphylococcus aureus COL strain, grown in a chemically defined medium is introduced here. Different standard operating procedures in the field of metabolome experiments were tested for common pitfalls. These included suitable and fast sampling processes, efficient metabolite extraction, quenching effectiveness (energy charge), and estimation of leakage and recovery of metabolites. Moreover, a cell disruption protocol for S. aureus was developed and optimized for metabolome analyses, for the express purpose of obtaining reproducible data. We used complementary methods (e.g., gas chromatography and/or liquid chromatography coupled with mass spectrometry) to detect the highly chemically diverse groups of metabolites for a global insight into the intracellular metabolism of S. aureus.  相似文献   

20.
Sortase A (SrtA) anchors surface proteins to the cell wall and aids biofilm formation during infection, which functions as a key virulence factor of important Gram-positive pathogens, such as Staphylococcus aureus. At present researchers need a way in which to validate whether or not SrtA is a druggable target alternative to the conventional antibiotic targets in the mechanism. In this study, we performed a high-throughput screening and identified a new class of potential inhibitors of S. aureus SrtA, which are derived from natural products and contain the quinone skeleton. Compound 283 functions as an irreversible inhibitor that covalently alkylates the active site Cys184 of SrtA. NMR analysis confirms the direct interaction of the small-molecule inhibitor towards SrtA protein. The anchoring of protein A (SpA) to the cell wall and the biofilm formation are significantly attenuated when the S. aureus Newman strain is cultured in the presence of inhibitor. Our study indicates that compound 283 could be a potential hit for the development of new anti-virulence agents against S. aureus infections by covalently targeting SrtA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号