首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates the activity of bio-signaling molecules and aids in metabolizing hydroxyl-containing xenobiotics. The sulfuryl donor for the SULT reaction is adenosine 3′-phosphate 5′-phosphosulfate (PAPS), while products are adenosine 3′,5′-diphosphate (PAP) and a sulfated alcohol. Human phenol sulfotransferase (SULT1A1) is one of the major detoxifying enzymes for phenolic xenobiotics. The mechanism of SULT1A1-catalyzed sulfation of PAP by pNPS was investigated. PAP was sulfated by para-nitrophenyl sulfate (pNPS) in a concentration-dependent manner. 2-Naphthol inhibited sulfation of PAP, competing with pNPS, while phenol activated the sulfation reaction. At saturating PAP, a ping pong kinetic mechanism is observed with pNPS and phenol as substrates, consistent with phenol intercepting the E–PAPS complex prior to dissociation of PAPS. At high concentrations, phenol competes with pNPS, consistent with formation of the E–PAP–phenol dead-end complex. Data are consistent with the previously reported mechanism for sulfation of 2-naphthol by PAPS, and its activation by pNPS [14]. Overall, data are consistent with release of PAP from E–PAP and PAPS from E–PAPS contributing to rate-limitation in both reaction directions.  相似文献   

2.
The substrate-inhibitory analysis has shown that single “atypical” cholinesterase (ChE) presents in tissues of freshwater oligochaete Lumbriculus variegatus (O.F. M?ller). This enzyme differs both from “typical” acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Specific activity of oligochaete ChE ranges 55–100 μmol ATCh g−1 tissue min−1 or 0.7–1 μmol ATCh mg−1 protein min−1, ratio of maximal rates (V) of substrate hydrolysises is 100:72:71:83 for acetyl-, propionyl-, butyryl- and acetyl-β-metylthiocholine respectively. Values of Michaelis constant (Km) for these substrates are (1.9–2.5) × 10−4 M. The bimolecular enzyme inhibition rate constants (kII) for organophosphorus inhibitors paraoxon, DDVP, and iso-OMPA are 107, 106 и 103 mol−1 | min−1. ATCh and BuTCh exhibit the effect of substrate inhibition of ChE activity, while PrTCh and MeTCh do not.  相似文献   

3.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

4.
Production of the oxidoreductive lignin-modifying enzymes – lignin and manganese peroxidases (MnPs), and laccase – of the white-rot basidiomycete Phlebia radiata was investigated in semi-solid cultures supplemented with milled grey alder or Norway spruce and charcoal. Concentrations of nutrient nitrogen and Cu-supplement varied also in the cultures. According to extracellular activities, production of both lignin peroxidase (LiP) and MnP was significantly promoted with wood as carbon source, with milled alder (MA) and low nitrogen (LN) resulting with the maximal LiP activities (550 nkat l−1) and noticeable levels of MnP (3 μkat l−1). Activities of LiP and MnP were also elevated on high nitrogen (HN) complex medium when supplemented with spruce and charcoal. Maximal laccase activities (22 and 29 μkat l−1) were obtained in extra high nitrogen (eHN) containing defined and complex media supplemented with 1.5 mM Cu2+. However, the nitrogen source, either peptone or ammonium nitrate and asparagine, caused no stimulation on laccase production without Cu-supplement. This is also the first report to demonstrate a new, on high Cu2+ amended medium produced extracellular laccase of P. radiata with pI value of 4.9, thereby complementing our previous findings on gene expression, and cloning of a second laccase of this fungus.  相似文献   

5.
In order to better understand the antioxidant behavior of a series of polyphenolic 2′-hydroxychalcones, we describe the results of several chemical and biological studies, in vitro and in vivo. Single crystal X-ray methods elucidated their molecular structures and important intermolecular interactions such as H-bonding and molecular stacking in the crystal structures that contribute to our knowledge in explaining antioxidant activity. The results of experiments using the 1,1-diphenyl-2-dipicrylhydrazyl (DPPH) UV–vis spectroscopic method indicate that a hydroxyl group in position 5′ induces the highest antioxidant activity. Consequently, 2,2′,5′-trihydroxychalcone was selected for further study in vitro towards ROS scavenging in L-6 myoblasts and THP-1 human monocytes, where it shows an excellent antioxidant activity in a concentration range lower than that reported by most studies of related molecules. In addition, this chalcone shows a very selective activity: it inhibits the proliferation of leukemic cells, but it does not affect the normal L-6 myoblasts and human fibroblasts. In studying 2,2′,5′-trihydroxychalcone's effect on weight gain and serum glucose and insulin levels in Zucker fatty (fa/fa) rats we found that supplementing the diet with a 10 mg/kg dose of this chalcone (3 times weekly) blunted the increase in glucose that co-occurs with weight gain over the 6-week treatment period. It is concluded that 2,2′,5′-trihydroxychalcone has the potential to serve as a protective agent for some debilitating diseases.  相似文献   

6.
The white-rot fungus Pleurotus eryngii F032 showed the capability to degrade a three fused-ring aromatic hydrocarbons fluorene. The elimination of fluorene through sorption was also investigated. Enzyme production is accompanied by an increase in biomass of P. eryngii F032 during degradation process. The fungus totally degraded fluorine within 23 d at 10-mg l−1 solution. Fluorene degradation was affected with initial fluorene concentrations. The highest enzyme activity was shown by laccase in the 10-mg l−1 culture after 30 d of incubation (1620 U l−1). Few activities of enzymes were observed in the fungal cell at the varying concentration of fluorene. Three metabolic were detected and separated in ethylacetate extract, after isolated by column chromatography. The metabolites, 9-fluorenone, phthalic acid, and benzoic acid were identified using UV–vis spectrophotometer and gas chromatography–mass spectrometry (GC–MS). The results show the presence of a complex mechanism for the regulation of fluorene-degrading enzymes.  相似文献   

7.
Two new organic-inorganic hybrid compounds, {[Cu(2,2′-bipy)2]2(Hbpy)[α-AlW12O40]}·H2O (1) and {[H2en][CuI(4,4′-bipy)]3(α-AlW12O40)}·4H2O (2) (2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine, py = pyridine, en = ethylene dimine) based on Keggin-type α-[AlW12O40]5− polyoxoaions and transition-metal organoamine subunits, have been hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis (TG), and single-crystal X-ray diffraction. In addition, the electrochemical properties and photocatalytic activity of compound 1 were studied. The structural analysis reveals that 1 shows a 1D infinite chain structure constructed from [α-AlW12O40]5− polyoxoanions and {[CuII(2,2′-bipy)2][CuII(2,2′-bipy)(py)]}4+ fragments, in which the remarkable aspect is that [α-AlW12O40]5− polyoxoanion is modified in a fascinating symmetrical mode. Compound 2 displays an unprecedented 2D extended structure constructed from [α-AlW12O40]5− polyoxoanions and 4,4′-bipy-CuI-4,4′-bipy linear chains, in which three - chain belts formed by three linear chains arranged Cu parallel connect alternately with [α-AlW12O40]5− polyoxoanions. As far as we know, compounds 1 and 2 represent the first 1D and 2D extended hybrid materials constructed from 3d transition metals and polyoxotungstoaluminates linked through covalent bonds.  相似文献   

8.
In this work, the kinetics of short, fully complementary oligonucleotides are investigated at the single-molecule level. Constructs 6–9 bp in length exhibit single exponential kinetics over 2 orders of magnitude time for both forward (kon, association) and reverse (koff, dissociation) processes. Bimolecular rate constants for association are weakly sensitive to the number of basepairs in the duplex, with a 2.5-fold increase between 9 bp (k′on = 2.1(1) × 106 M−1 s−1) and 6 bp (k′on = 5.0(1) × 106 M−1 s−1) sequences. In sharp contrast, however, dissociation rate constants prove to be exponentially sensitive to sequence length, varying by nearly 600-fold over the same 9 bp (koff = 0.024 s−1) to 6 bp (koff = 14 s−1) range. The 8 bp sequence is explored in more detail, and the NaCl dependence of kon and koff is measured. Interestingly, konincreases by >40-fold (kon = 0.10(1) s−1 to 4.0(4) s−1 between [NaCl] = 25 mM and 1 M), whereas in contrast, koffdecreases by fourfold (0.72(3) s−1 to 0.17(7) s−1) over the same range of conditions. Thus, the equilibrium constant (Keq) increases by ≈160, largely due to changes in the association rate, kon. Finally, temperature-dependent measurements reveal that increased [NaCl] reduces the overall exothermicity (ΔΔH° > 0) of duplex formation, albeit by an amount smaller than the reduction in entropic penalty (−TΔΔS° < 0). This reduced entropic cost is attributed to a cation-facilitated preordering of the two single-stranded species, which lowers the association free-energy barrier and in turn accelerates the rate of duplex formation.  相似文献   

9.
An electrochemical biosensor was developed for Hg2+ determination based on DNA hybridization. In the presence of Hg2+, the target and probe DNAs with thymine–thymine (T–T) mismatches could hybridize by forming T–Hg2+–T complex. This induced DNA hybridization led to the decrease in reduction peak currents of ethyl green (EG) as electroactive label, which could be used for determination of Hg2+. The difference in the value of the peak currents of EG before and after DNA hybridization (ΔI) was linear with the concentration of Hg2+ in the range of 9.0 × 10−11–1.0 × 10−9 M. The detection limit was 3.08 × 10−11 M.  相似文献   

10.
The syntheses and electrochemical properties of novel ruthenium(II) polypyridyl complexes with 4,4-bipyrimidine, [Ru(trpy)(bpm)Cl](X) ([1](X; X=PF6, BF4)) and with a quaternized 4,4-bipyrimidinium ligand, [Ru(trpy)(Me2bpm)Cl](BF4)3 ([2](BF4)3) (trpy=2,2:6,2″-terpyridine, bpm=4,4-bipyrimidine, Me2bpm=1,1-dimethyl-4,4-bipyrimidinium) are presented. The bpm complex [1]+ was prepared by the reaction of Ru(trpy)Cl3 with 4,4-bipyrimidine in EtOH/H2O. The structural characterization of [1]+ revealed, that the bpm ligand coordinated to the ruthenium atom with the bidentate fashion. Diquaternization of the non-coordinating nitrogen atoms on bpm of [1]+ by (CH3)3OBF4 in CH3CN gave [2](BF4)3. The electrochemical and spectroelectrochemical properties of the complexes are described.  相似文献   

11.
The purpose of this study was to develop and validate an ultra performance liquid chromatography–mass spectrometry (UPLC/MS) method to investigate the hepatic oxidative metabolism of 2,2′,4,4′,5-pentabromodiphenyl ether (BDE-99), a widely used flame retardant and ubiquitous environmental contaminant. Hydroxylated metabolites were extracted using liquid-to-liquid extraction, resolved on a C18 column with gradient elution and detected by mass spectrometry in single ion recording mode using electrospray negative ionization. The assay was validated for linearity, accuracy, precision, limit of quantification, range and recovery. Calibration curves were linear (R2 ≥ 0.98) over a concentration range of 0.010–1.0 μM for 4-OH-2,2′,3,4′,5-pentabromodiphenyl ether (4-OH-BDE-90), 5′-OH-2,2′,4,4′,5-pentabromodiphenyl ether (5′-OH-BDE-99) and 6′-OH-2,2′,4,4′,5-pentabromodiphenyl ether (6′-OH-BDE-99), and a concentration range of 0.0625–12.5 μM for 2,4,5-tribromophenol (2,4,5-TBP). Inter- and intra-day accuracy values ranged from −2.0% to 6.0% and from −7.7% to 7.3%, respectively, and inter- and intra-day precision values ranged from 2.0% to 8.5% and from 2.2% to 8.6% (n = 6), respectively. The limits of quantification were 0.010 μM for 4-OH-BDE-90, 5′-OH-BDE-99 and 6′-OH-BDE-99, and 0.0625 μM for 2,4,5-TBP. Recovery values ranged between 85 and 100% for the four analytes. The validated analytical method was applied to identify and quantify hydroxy BDE-99 metabolites formed in vitro. Incubation of BDE-99 with rat liver microsomes yielded 4-OH-BDE-90 and 6′-OH-BDE-99 as major metabolites and 5′-OH-BDE-99 and 2,4,5-TBP as minor metabolites. To our knowledge, this is the first validated UPLC/MS method to quantify hydroxylated metabolites of PBDEs without the need of derivatization.  相似文献   

12.
13.
After cryopreservation, embryos become sensitive to the oxidative stress, resulting in lipid peroxidation, membrane injury, and structural destruction. The present study aimed to assess the effect of increasing concentration of melatonin during postwarming culture on embryo's ability to restore its functions after cryopreservation. In vitro–produced blastocysts were vitrified, warmed, and cultured in vitro in TCM 199 with 5 different supplementations: control (CTR): 10% fetal calf serum; bovine serum albumin (BSA): 0.04% (wt/vol) BSA; and MEL−3, MEL−6, MEL−9: BSA plus melatonin 10−3, 10−6, and 10−9 M. The medium with the highest melatonin concentration had the highest trolox equivalent antioxidant capacity, whose values were comparable with those determined in plasma sampled from adult ewes (8.7 ± 2.4 mM). The other media had lower trolox equivalent antioxidant capacity values (P < 0.01), below the range of the plasma. At the same time, embryos cultured with the highest melatonin concentration reported a lower in vitro viability, as evaluated by lower re-expansion and hatching rates, and lower total cell number compared with the other groups (P < 0.05). Their metabolic status was also affected, as evidenced by higher oxidative and apoptotic index and lower ATP concentration. The beneficial effects of melatonin on embryo development during postwarming culture were observed only at low concentration (10−9 M). These results suggest that melatonin at high concentration may exert some degree of toxic activity on pre-implantation embryos. Thus, the dose at which the embryos are exposed is pivotal to obtain the desiderate effect.  相似文献   

14.
Phenol degradation by Bacillus cereus AKG1 MTCC9817 and AKG2 MTCC 9818 was investigated and degradation kinetics are reported for the free and Ca-alginate gel-immobilized systems. The optimal pH for maximum phenol degradation by immobilized AKG1 and AKG2 was found to be 6.7 and 6.9, respectively, while 3% alginate was optimum for both the strains. The degradation of phenol by free as well as immobilized cells was comparable at lower concentrations of phenol (100–1000 mg l−1). However, the degradation efficiency of the immobilized strains was higher than that of the free strains at higher phenol concentrations (1500–2000 mg l−1), indicating the improved tolerance of the immobilized cells toward phenol toxicity. More than 50% of 2000 mg l−1 phenol was degraded by immobilized AKG1 and AKG2 within 26 and 36 days, respectively. Degradation kinetics of phenol by free and immobilized cells are well represented by the Haldane and Yano model.  相似文献   

15.
In this study, a novel tracer, horseradish peroxidase (HRP) functionalized gold nanorods (Au NRs) nanocomposites (HRP–Au NRs), was designed to label the signal antibodies for sensitive electrochemical measurement of alpha-fetoprotein (AFP). The preparation of HRP–Au NRs nanocomposites and the labeling of secondary antibody (Ab2) were performed by one-pot assembly of HRP and Ab2 on the surface of Au NRs. The immunosensor was fabricated by assembling carbon nanotubes (CNTs), Au NRs, and capture antibodies (Ab1) on the glassy carbon electrode. In the presence of AFP antigen, the labels were captured on the surface of the Au NRs/CNTs via specific recognition of antigen–antibody, resulting in the signal intensity being clearly increased. Differential pulse voltammetry (DPV) was employed to record the response signal of the immunosensor in phosphate-buffered saline (PBS) containing hydrogen peroxide (H2O2) and 3,3′,5,5′-tetramethylbenzidine (TMB). Under optimal conditions, the signal intensity was linearly related to the concentration of AFP in the range of 0.1–100 ng ml−1, and the limit of detection was 30 pg ml−1 (at signal/noise [S/N] = 3). Furthermore, the immunoassay method was evaluated using human serum samples, and the recovery obtained was within 99.0 and 102.7%, indicating that the immunosensor has potential clinical applications.  相似文献   

16.
Three new organic-inorganic hybrid materials with 4,4′-bipy ligands and copper cations as linkers, [CuII(H2O)(4,4′-bipy)2][CuII(H2O)(4,4′-bpy)2]2H[CuIIP8Mo12O62H12] · 5H2O (1), [CuI(4,4′-bipy)][CuII(4,4′-bipy)]2 (BW12O40) · (4,4′-bipy) · 2H2O (2) and [CuI (4,4′-bipy)]3 (PMo12O40) · (pip) · 2H2O (3) (pip = piperazine; 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. The single X-ray structural analysis reveals that the structure of 1 is constructed from [Cu(H2O)(4,4′-bipy)2] complexes into a novel, three-dimensional supermolecular network with 1-D channels in which Cu[P4Mo6]2 dimer clusters reside. To the best of our knowledge, compound 1 is the first complex in which the [P4Mo6] clusters have been used as a non-coordinating anionic template for the construction of a novel, three-dimensional supermolecular network. Compound 2 is constructed from the six-supported [BW12O40]5− polyoxoanions and [CuI(4,4′-bipy)] and [CuII(4,4′-bipy)] groups into a novel, 3-D network. Compound 3 exhibits unusual 3-D supramolecular frameworks, which are constructed from tetrasupporting [PMo12O40]3− clusters and [CuI (4,4′-bipy)n] coordination polymer chains. The electrochemical properties of 2 and 3 have been investigated in detail.  相似文献   

17.
Gold nanoparticles-modified boron-doped diamond (AuNPs–BDD) electrodes, which were prepared with a self-assembly deposition of AuNPs at amine-terminated boron-doped diamond, were examined for voltammetric detection of neuraminidase (NA). The detection method was performed based on the difference of electrochemical responses of zanamivir at gold surface before and after the reaction with NA in phosphate buffer solution (PBS, pH 5.5). A linear calibration curve for zanamivir in 0.1 M PBS in the absence of NA was achieved in the concentration range of 1 × 10−6 to 1 × 10−5 M (R2 = 0.99) with an estimated limit of detection (LOD) of 2.29 × 10−6 M. Furthermore, using its reaction with 1.00 × 10−5 M zanamivir, a linear calibration curve of NA can be obtained in the concentration range of 0–12 mU (R2 = 0.99) with an estimated LOD of 0.12 mU. High reproducibility was shown with a relative standard deviation (RSD) of 1.14% (n = 30). These performances could be maintained when the detection was performed in mucin matrix. Comparison performed using gold-modified BDD (Au–BDD) electrodes suggested that the good performance of the detection method is due to the stability of the gold particles position at the BDD surface.  相似文献   

18.
Three new coordination compounds with 4-sulfophthalic acid (H3SPA) ligand, namely {[Pb3(4-SPA)2(H2O)](H2O)}n (1), [Mn(4,4′-bpy)2(H2O)4][Mn2(4-SPA)2-(4,4′-bpy)4(H2O)4]·7.5(H2O) (2) and Cu2(4-HSPA)2(2,2′-bpy)2(H2O)2 (3) (4,4′-bpy = 4,4′-bipyridine and 2,2′-bpy = 2,2′-bipyridine), have been synthesized. The structures exhibit different dimensionality depending on the nature of the metal ions and/or the ancillary ligands. Compound 1 has a 2D layered architecture constructed from one-dimensional inorganic lead(II) oxygen chains containing tetranuclear [Pb42-O)4] cluster. Compound 2 has a dinuclear manganese [Mn2(4-SPA)2(4,4′-bpy)4(H2O)4] motif charged with mononuclear [Mn(4,4′-bpy)2(H2O)4]2+ cation. Compound 3 is a discrete dinuclear copper(II) structure that linked by extensive hydrogen bonds to form a three-dimensional supramolecular structure. In the solid state, compound 1 exhibits blue photoluminescence with the maximum at 432 nm upon excitation at 350 nm. The temperature-dependent magnetic susceptibility data of 2 have been investigated. The Curie constant C and Weiss constant θ are 3.14 emu K mol−1 and −2.09 K, respectively, revealing antiferromagnetically magnetic interactions between the Mn2+ ions. In addition, these compounds are characterized by powder X-ray diffraction, IR, elemental analysis, and thermogravimetric analysis.  相似文献   

19.
This paper reports a label-free electrochemical immunosensor for the determination of aflatoxin B1 (AFB1), which is based on a gold electrode modified by a biocompatible film of carbon nanotubes/poly(diallyldimethylammoniumchloride)/Pd–Au nanoparticles (CNTs/PDDA/Pd–Au). The nanocomposite was characterized by transmission electron microscopy and the electrochemical behavior of modified electrodes was investigated by cyclic voltammetry. The CNTs/PDDA/Pd–Au nanocomposites film showed good electron transfer ability, which ensured high sensitivity to detect AFB1 in a range from 0.05 to 25 ng mL−1 with a detection limit of 0.03 ng mL−1 obtained at 3σ (where σ is the standard deviation of the blank solution, n = 10). The proposed immunosensor provides a simple tool for AFB1 detection. This strategy can be extended to any other antigen detection by using the corresponding antibodies.  相似文献   

20.
The interactions between carbon nanotubes (CNTs) and biologics have been commonly studied by various microscopy and spectroscopy methods. We tried biomolecular interaction analysis to measure the kinetic interactions between proteins and CNTs. The analysis demonstrated that wheat germ agglutinin (WGA) and other proteins have high affinity toward carboxylated CNT (f-MWCNT) but essentially no binding to normal CNT (p-MWCNT). The binding of f-MWCNT–protein showed dose dependence, and the observed kinetic constants were in the range of 10−9 to 10−11 M with very small off-rates (10−3 to 10−7 s−1), indicating a relatively tight and stable f-MWCNT–protein complex formation. Interestingly in hemolysis assay, p-MWCNT showed good biocompatibility, f-MWCNT caused 30% hemolysis, but WGA-coated f-MWCNT did not show hemolysis. Furthermore, the f-MWCNT–WGA complex demonstrated enhanced cytotoxicity toward cancer cells, perhaps through the glycoproteins expressed on the cells' surface. Taken together, biomolecular interaction analysis is a precise method that might be useful in evaluating the binding affinity of biologics to CNTs and in predicting biological actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号