首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We tested the hypothesis that continuous subcutaneous treatment with low-dose GnRH, administered to mares from late September/early October through March, would prevent the development of seasonal anovulation. Quarter Horse mares (n=20) were stratified by age and body condition score and assigned randomly to either a saline control (n=9) or a GnRH (n=11) treatment group. Gonadotropin-releasing hormone was delivered continuously via osmotic minipumps, with sham pumps placed in control mares. Initial pumps were inserted on Day 3 following ovulation or during the follicular phase if the next anticipated ovulation did not occur by 9 October. Delivery rate of GnRH was 2.5 microg/h (60 microg/day) for the first 60 days, followed by 5.0 microg/h (120 microg/day) thereafter. Pumps were replaced every 30 days. Eighty and 100% of all mares had become anovulatory by 1 November and 1 December, respectively, and remained anovulatory through the end of February. Neither serum concentrations of LH throughout the study nor total releasable pools of LH in March differed between groups. Although control mares that exhibited ovulatory cycles after study onset had greater (P<0.05) mean concentrations of LH during the follicular phase and metestrus compared to GnRH-treated mares, neither size of ovulatory follicles nor interovulatory intervals differed between groups. Serum concentrations of FSH were not affected by treatment, but were lowest (P<0.05) from November through January. Continuous infusion of low-dose GnRH, beginning soon after autumnal equinox and continuing until just after vernal equinox, failed to prevent the occurrence of or to hasten transition from seasonal anovulation.  相似文献   

2.
Onset of the winter anovulatory period in mares is associated with a marked diminution in adenohypophyseal synthesis and release of LH. Native GnRH, unlike its synthetic agonists, stimulates the synthesis and secretion of LH in mares without pituitary refractoriness. Herein we tested the hypotheses that (1) the average Julian day of pregnancy can be accelerated by up to 2 months in winter anovulatory mares treated continuously with native GnRH beginning on February 1 and (2) mares will sustain luteal function and pregnancy after treatment withdrawal. Forty-two winter anovulatory mares were stratified by age, body condition score, and size of the largest follicle across two locations in a randomized design and assigned to one of three groups (n = 14 per group): (1) Control: untreated, (2) GnRH-14: GnRH delivered subcutaneously in saline at a rate of 100 μg/h for 8 weeks (February 1–March 29) using four consecutive 14-day pumps (Alzet 2ML2), or (3) GnRH-28: GnRH delivered as in (2), but using two 28-day pumps (Alzet 2ML4). On development of a 35-mm follicle and expression of estrus, mares were bred the following day and treated with hCG. Pregnancies were confirmed using transrectal ultrasonography on Days 14, 24, 33, and 45, with blood samples collected to assess luteal function. Mares treated with GnRH (GnRH-14 and GnRH-28) did not differ reproductively in their responses and data were pooled for statistical comparisons. Mares treated with GnRH exhibited marked increases (P ≤ 0.04) in the frequency of development of a 35-mm follicle, submission rate for live cover and/or artificial insemination, ovulation, and pregnancy compared with control mares on treatment Day 56 (March 29). Interval to the first 35-mm follicle was 51.8 ± 4.9 and 19.3 ± 3.5 days (least square mean ± standard error of the mean) for control and GnRH-treated mares, respectively. Interval to pregnancy was 65.3 ± 6.7 and 28.6 ± 4.8 days (least square mean ± standard error of the mean) for control and GnRH-treated mares, respectively, excluding one GnRH-14 mare that failed to become pregnant over four cycles. By the end of the treatment period (March 29), only 21% of control mares were pregnant compared with 79% of GnRH-treated mares. Furthermore, mean serum concentrations of progesterone were similar to (GnRH-28; P = 0.26) or greater than (GnRH-14; P = 0.01) that of control mares from Day 0 to 46 postbreeding. Data illustrate that continuous administration of native GnRH is a highly efficient option for managing seasonal anovulation in mares and could be effectively used in the breeding industry if a user-friendly delivery option were available.  相似文献   

3.
Three experiments were conducted during the operational breeding season to confirm that continuous, subcutaneous infusion of low-dose GnRH would not disrupt established estrous cycles (Experiment 1), and test the hypotheses that a similar treatment would stimulate secretion of LH and induce development of ovulatory follicles in persistently anovulatory mares (Experiments 2 and 3). Treatment with GnRH (5 microg/h) increased (P<0.001) serum P4 during the luteal phase (7.7+/-0.5 versus 6.4+/-0.5 ng/mL), tended to increase serum LH (2.6+/-0.27 versus 1.9+/-0.25 ng/mL), and did not modify interovulatory intervals. In Experiment 2, GnRH treatment (2.5-5 microg/h) of persistently anovulatory mares increased (P<0.001) serum LH compared to controls (0.5+/-0.08 versus 0.1+/-0.03 ng/mL), with all GnRH-treated and no Control mares ovulating. Mares exhibiting Delayed Recrudescence (n=29) or Lactational Anovulation (n=18), were assigned randomly in Experiment 3 to receive either (1) GnRH/GnRH (n=23); 2.5 microg GnRH/h for 14 d (Period I) and 5 microg/h during the subsequent 28 d (Periods II and III); or (2) Control/GnRH (n=24); no treatment during Period I (control period) and GnRH treatments as in 1 during Periods II and III. Percentage of mares ovulating and pregnant during Period I was greater (P<0.05) for GnRH-treated than Control mares. Thereafter, cumulative ovulation frequency (85%), pregnancy (72%) and cycles/conception (1.3+/-0.2) were similar between groups; however, interval to conception was reduced (P<0.01) by 10.3 d in GnRH/GnRH compared to Control/GnRH.  相似文献   

4.
The effects of estradiol cypionate (ECP) and GnRH injections were tested on mares during January and February. Sixteen mares were blocked on their ovarian status and equally allotted to two groups. Group one received daily injections of 500 μg ECP (im) for 14 days followed by a 21 day period of twice daily injections of 200 μg GnRH (im). Group two received the carrier vehicle.Mean length of diestrus of ovulatory mares was 14.3 ± 1.6 days and 17.8 ± 3.5 days for treated and control groups respectively. Corresponding estrus lengths were 8.0 ± 1.4 days and 6.3 ± 2.1 days. Plasma LH levels, number of follicles < 20 mm, number of follicles > 20 mm and diameter of the largest follicle in ovulatory mares were not significantly affected by treatment with ECP or GnRH.Anovulatory mares treated with ECP and GnRH exhibited estrus more frequently (54% and 70% of the time) than sham injected controls (17% and 15% of the time). Plasma LH levels were significantly elevated (P<.05) in anovulatory mares treated with GnRH. Also more follicles < 20 mm (P<.09) were detected on the ovaries of GnRH treated mares than on those of control mares. Effects of the treatment were transient since LH levels and ovarian activity were similar in both mare groups after cessation of treatment.  相似文献   

5.
In experiment 1, seven groups of pony mares (2 or 3/group) were given either no injections (controls), or 5(5X) or 10(10X) daily subcutaneous (SC) injections of 1.25 mg PGF beginning on days 1, 7 or 13 post-ovulation. Compared to controls (24.5 days), the interovulatory interval was longer (P<.05) for day 7, 10X (33.5 days) and day 13, 10X mares (49.0 days) but was not different for the remaining groups. In experiment 2, nine groups of pony mares (4/group) were given either no injections (controls) or 1(1X) or 10(10X) daily SC injections of 1.25 mg PGF beginning on day 2 of estrus or on days 1, 7 or 13 post-ovulation. Compared to controls (25.0 days), the interovulatory interval was longer (P<.05) for day 13 post-ovulation, 10X mares (40.0 days) and shorter (P<.05) for day 1 post-ovulation, 10X mares (14.5 days). The interovulatory interval for the remaining groups was not different (P>.05) from that for controls. In day 13 post-ovulation, 10X mares, the longer interovulatory interval did not appear to be related to a depression in either peripheral LH concentration (no effect of treatment on LH) or on follicular development (no effect of treatment on diameter of largest follicle). This suggests that circulating levels of gonadotropins were adequate for ovarian follicular development and ovulation and the effect of repeated daily injections of PGF in preventing ovulation was likely exerted at the ovarian level directly on the follicle.  相似文献   

6.
Cycling standardbred mares were infused with saline or 20 micrograms gonadotropin-releasing hormone (GnRH) in a pulsatile pattern (one 5-sec pulse/h, 2 h or 4 h) beginning on Day 16 of the estrous cycle. Although serum concentrations of luteinizing hormone (LH) increased significantly earlier in all three GnRH-treated groups (within one day of the initiation of infusion) compared to saline-infused controls, there were no differences in peak periovulatory LH concentrations among treatments (overall mean +/- SEM, 8.98 +/- 0.55 ng/ml). The number of days from the start of treatment to ovulation was significantly less in mares infused with 20 micrograms GnRH/h (mean +/- SEM, 2.9 +/- 0.6 days after the initiation of treatment, or 18.9 days from the previous ovulation; N = 7) compared to mares treated with saline (5.9 +/- 0.3 days, or 21.9 days from previous ovulation; N = 7) or 20 micrograms GnRH per 4 h (5.4 +/- 0.9 days or 21.4 days from previous ovulation; N = 5). Although mares infused with 20 micrograms GnRH/2 h ovulated after 4.3 +/- 0.7 days of treatment (Day 20.3; N = 7), this was not significantly different from either the control or 20 micrograms GnRH/h treatment groups. Neither the duration of the resulting luteal phase nor the length of the estrous cycle was different between any of the treatment groups (combined means, 14.7 +/- 0.2 days and 21.3 +/- 0.4 days, respectively). We conclude that pulsatile infusion of GnRH is effective in advancing the time of ovulation in cycling mares, but that the frequency of pulse infusion is a critical variable.  相似文献   

7.
Two experiments were conducted using a 21-day GnRH analogue treatment regimen to induce ovulation in seasonally anovulatory mares. In Experiment 1, nontreated (n=20) and treated (n=83) mares were defined as having inactive ovaries (largest follicle相似文献   

8.
Seasonally anovulatory mares were injected, i.m., twice daily with a GnRH analogue (GnRH-A), and hCG was given when the largest follicle reached 35 mm in diameter. In Exp. 1, treatment was initiated on 23 December when the largest follicle per mare was less than or equal to 17 mm. An ovulatory response (ovulation within 21 days) occurred in 17 of 30 (57%) GnRH-A-treated mares on a mean of 15.8 days. The shortest interval to ovulation in control mares (N = 10) was 57 days. The diameter of the largest follicle first increased significantly 6 days after start of treatment. In Exp. 2, treatment was begun on 15 January and mares were categorized according to the largest follicle at start of treatment. The proportion of mares ovulating within 21 days increased significantly according to initial diameter of largest follicle (less than or equal to 15 mm, 9/25 mares ovulated; 15-19 mm, 13/21; 20-24 mm, 20/24; greater than 25 mm, 3/3). The multiple ovulation rate was greater (P less than 0.01) for treated mares (27/86 mares had multiple ovulations) than for control mares (2/35). Treated mares in which the largest follicle at start of treatment was greater than or equal to 25 mm had a higher (P less than 0.01) multiple ovulation rate (9/14) than did mares in which the largest follicle was less than 25 mm (18/72). The pregnancy rate for single ovulators was not different between control mares (26/30 pregnant mares) and treated mares (43/54).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The temporal relationships between follicle deviation and systemic hormone concentrations were studied in mares. Blood samples were obtained at 01:00, 07:00, 13:00, and 19:00 h from nine mares throughout an interovulatory interval. Diurnal variation in progesterone occurred on Days 4-12 and in LH on Days 4 and 5; the lowest concentration for both hormones was at 13:00 h. Ultrasonically observed deviation in the ovulatory follicular wave began on Day 15.7+/-0.5 (ovulation=Day 0). An increase (P<0.002) in LH began on Day 14 before the beginning of deviation, and an increase (P<0.05) in estradiol began at the beginning of deviation. Testosterone concentrations began to increase (P<0.05) 2 days after the beginning of deviation and reached maximum 1 day before the next ovulation. The beginning of deviation was encompassed by a decline (P<0.003) in cortisol concentrations, and the concentrations remained low during the preovulatory period.  相似文献   

11.
Deeply acyclic (seasonally anovulatory) mares were treated with GnRH or a GnRH analogue to induce follicular development and ovulation. Courses of GnRH (3--4) were administered at approximately 10-day intervals to reproduce the gonadotrophin surges which precede ovulation in the normal cycle. Exogenous progesterone was administered in an attempt to reproduce the luteal phase pattern. Induced serum FSH concentrations were comparable to those causing follicular development in the normal cycle, but induced LH levels were lower and of shorter duration than those of the periovulatory surge. Three of 4 mares treated with GnRH appeared to ovulate, but did not establish CL. Nine of 10 mares given GnRH analogue also developed follicles during the final treatment course, as did mares treated with progesterone only, while only 1 of 5 untreated control mares showed any ovarian development. Failure to induce final follicular maturation and CL development by this treatment regimen may be due to an inadequate LH surge at the time of the expected ovulation associated with the low preovulatory oestradiol-17 beta surge, possibly caused by the preceding FSH stimulation being inadequate or inappropriate. Progesterone treatment increased baseline FSH concentrations in GnRH-treated mares, and also stimulated follicular development in mares not treated with GnRH, indicating a possible role for progesterone in folliculogenesis and, indirectly, ovulation.  相似文献   

12.
Sixteen seasonally anovulatory mares were randomly allotted to two groups and injected daily with either sulpiride (1 mg/kg body weight) or vehicle from 14 January to 14 February. Sulpiride administration increased daily plasma prolactin concentrations (P < 0.05), although the prolactin response during the 6 h following sulpiride injections decreased markedly from the 1st to the 6th day of treatment (treatment by day, P < 0.0001). Plasma concentrations of LH and FSH were not affected by treatment (P > 0.1). Injection of GnRH and TRH on 15 February showed that the response of plasma prolactin to secretagogue was increased in sulpiride-treated mares (P < 0.005), while there was no effect (P > 0.1) of sulpiride treatment on the response of LH or FSH. Both treatment groups had similar changes in numbers of follicles 10-19 and > or = 20 mm during the experiment (P > 0.1). Similarly, the mean change in maximal follicular size was not affected by treatment (P > 0.9). No mare ovulated during the study, and plasma progesterone concentrations were similar in both groups (P > 0.1), always at levels < 1 ng/ml. Hairshedding increased with time in all mares (P < 0.001) and was increased by sulpiride injections (P = 0.09). It was concluded that sulpiride administration to seasonally anovulatory mares under the conditions of our experiment increased daily plasma prolactin levels but did not stimulate gonadotropin secretion or ovarian activity.  相似文献   

13.
Standard bred mares that were cycling normally were treated beginning on Days 9 or 10 of the oestrous cycle with repeated pulses of GnRH (20 micrograms/h) and/or a single injection of prostaglandin (PG)F-2 alpha (alfaprostol, 3 mg), and were subsequently bled and palpated daily until the next ovulation. GnRH treatment increased serum concentrations of LH and progesterone at 4 days after the start of treatment compared to controls. The combination of PGF-2 alpha + GnRH treatment resulted in an immediate decline in serum progesterone values, and subsequently decreased the interval to next ovulation by 4.5 days compared to controls. Mean serum concentrations of FSH were not different among treatment groups 4 days after the start of treatment, and there was a consistent trend among all treatment groups for decreasing concentrations of FSH within the 6 days before ovulation. We conclude that, under our experimental conditions, pulsatile administration of GnRH provides a short-term luteotrophic stimulus, probably by the elevation in serum LH, but that this stimulus cannot indefinitely prevent the luteolytic effects of exogenously administered PGF-2 alpha. Although GnRH treatment combined with PGF-2 alpha injection hastened the impending ovulation, this regimen was no more effective than PGF-2 alpha treatment alone.  相似文献   

14.
Deslorelin implants, approved for use in inducing ovulation in mares, have been associated with prolonged interovulatory intervals in some mares. Administration of prostaglandins in the diestrous period, following a deslorelin-induced ovulation, has been reported to increase the incidence of delayed ovulations. The goals of the present study were: (1) to determine the percentage of mares given deslorelin that experience delayed ovulations with or without subsequent prostaglandin treatment, and (2) to determine if removal of the implant 48 h after administration would effect the interval to subsequent ovulation. We considered interovulatory intervals to be prolonged if they were greater than the mean +/- 2 standard deviation (S.D.) of the control group in study 1 and the hCG group in study 2. In study 1, we retrospectively reviewed reproduction records for 278 mares. We either allowed the mare to ovulate spontaneously or induced ovulation using deslorelin acetate implants or hCG. We administered prostaglandin intramuscularly, 5-9 days after ovulation in selected mares in each group. A higher percentage of mares which were induced to ovulate with deslorelin and given prostaglandins had a prolonged interovulatory interval (23.5%; n = 16), as compared to deslorelin-treated mares that did not receive prostaglandins (11.1%; n = 5). In study 2, we induced ovulation in mares with hCG (n = 47), a subcutaneous deslorelin implant via an implanting device provided by the manufacturer (n = 28), or a deslorelin implant via an incision in the neck (n = 43) and we removed the implant 48 h after administration. We administered prostaglandin to all mares 5-9 days after ovulation. In study 2, mares from which the implant was removed had a normal ovulation rate and none had a prolonged interval to ovulation. Administration of prostaglandin after deslorelin treatment was associated with a longer interval from luteolysis to ovulation than that found in mares not treated with deslorelin. Prostaglandin administration during diestrus may have exacerbated the increased interval to ovulation in deslorelin-treated mares. We hypothesize that prolonged secretion of deslorelin from the implant was responsible for the extended interovulatory intervals.  相似文献   

15.
Beginning in December, pony mares were placed under a schedule of increasing light. Starting in February, onset of estrus was checked by daily teasing with a stallion. Mares were randomly assigned to one of three treatments (6 mares per group) administered in March. Treatments were: Group I — 75 mg progesterone injected intramuscularly every day for 10 days in combination with a 1.25 mg injection of PGF2α on day 7 of progesterone treatment and a 2,000 IU injection of HCG on day 2 of estrus; Group II — a norgestomet ear implant inserted for 10 days in combination with 1.25 mg PGF2α given 7 days after insertion and 2,000 IU HCG administered on day 2 of estrus; and Group III — same as II except that 2 mg of GnRH rather than HCG were administered on day 2 of estrus. Blood plasma for radioimmunoassay of progesterone, LH and estradiol was collected from the first day of treatment until 14 days after the end of estrus. Also in March, 6 mares were bled daily from the first day of estrus until subsequent estrus or day 21 (control estrus). Although estrus was detected in all mares, 14 of 18 mares ovulated subsequent to treatments and four of the six control estrus mares ovulated. Only among HCG treated mares was the ovulation rate higher (P < .05) than it was in the control estrus group. The interval from last progesterone injection or norgestomet implant removal to estrus did not differ between treatment groups. Concentrations of estradiol and LH were increased for several days around the time of ovulation and tended to be positively correlated with each other. In the mares that did not ovulate, concentrations of LH and estradiol appeared to be lower than in mares that ovulated. In summary, progestins in combination with PGF2α and increasing light will synchronize estrus in mares during late winter and HCG will hasten ovulation in some mares.  相似文献   

16.
Individual follicles were monitored by ultrasonography in 15 mares during the transitional period preceding the first ovulation of the year and in 9 mares during the first interovulatory interval. During the transitional period, 7 mares developed 1-3 anovulatory follicular waves characterized by a dominant follicle (maximum diameter greater than or equal to 38 mm) that had growing, static, and regressing phases. The emergence of a subsequent wave (anovulatory or ovulatory) did not occur until the dominant follicle of the previous wave was in the static phase. After the emergence of the subsequent wave, the previous dominant follicle regressed. The mean (+/- s.d.) length of the interval between successive waves was 10.8 +/- 2.2 days. Before the emergence of waves (identified by a dominant follicle), follicular activity seemed erratic and follicles did not reach greater than 35 mm. During the interovulatory interval, 6 mares developed 2 waves (an anovulatory wave and a subsequent ovulatory wave) and 3 mares developed only 1 detected wave (the ovulatory wave). The ovulatory follicle at the end of the transitional period reached 20 mm earlier (Day - 15), grew slower (2.6 +/- 0.1 mm/day; mean +/- s.e.m.) but reached a larger diameter on Day - 1 (50.5 +/- 1.1 mm) than for the ovulatory follicle at the end of the interovulatory interval (Day - 10, 3.6 +/- 0.2 mm/day, 44.4 +/- 1.0 mm, respectively; P less than 0.05 for each end point). The interval from cessation of growth of the largest subordinate follicle to the occurrence of ovulation was longer (P less than 0.05) for end of the transitional period (9.5 +/- 0.7 days) than for the end of the interovulatory interval (6.8 +/- 0.6 days). Results demonstrated the occurrence of rhythmic follicular waves during some transitional periods and the occurrence of 2 waves during some of the first oestrous cycles of the year.  相似文献   

17.
The effects of two GnRH antagonists were tested in order to delay and/or synchronise ovulation in mares. Five mares received Antarelix (0.01 mg.kg(-1)), 5 mares received Cetrorelix (the same dose), 5 mares (control mares) received the vehicle intravenously, twice daily, for 8 days from the day the largest follicle reached 22 mm following prostaglandin administration. Ovulation was postponed in all mares injected with Antarelix (19.4 +/- 1.2 days after the beginning of the treatment) and in 2/5 mares injected with Cetrorelix (20 +/- 1 days) vs. 6.2 +/- 0.4 days in control mares. During the treatment, LH concentrations were strongly depressed in Antarelix and in Cetrorelix mares (1.6 +/- 0.1 and 3.8 +/- 0.5 ng.mL(-1) respectively vs. 21 +/- 2.5 ng.mL(-1) in control mares). In the 3 Cetrorelix mares which ovulated during the treatment. 2 initiated their LH surge at this moment. FSH concentrations were not affected in Antarelix or in Cetrorelix mares during the treatment (11.4 +/- 1.3 and 7.9 +/- 0.8 ng.mL(-1) respectively vs. 10.5 +/- 0.8 ng.mL(-1) in control mares). In conclusion, Antarelix seems more efficient than Cetrorelix for postponing ovulation in mares. The role of LH in antral follicular development before the preovulatory stage is confirmed.  相似文献   

18.
A study was conducted to evaluate the effectiveness of gonadotropin-releasing hormone (GnRH) pulse infusion to stimulate follicular development and induce ovulation in seasonally anestrous standardbred mares. Seventeen mares were selected for use in this experiment, on the basis of a previous normal reproductive history, and were housed under a photoperiod of 8L:16D beginning one week prior to the start of the experiment (second week in January). Mares were infused with 20 micrograms (n = 7) or 2 micrograms (n = 6) GnRH/h, or were subjected to photoperiod treatment only (controls, n = 4). Serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and progesterone did not vary, and neither significant follicular development nor ovulation was observed in any control mare throughout the experimental period (greater than 60 days). By contrast, both groups of GnRH-treated mares showed elevated serum concentrations of LH and FSH within one day after the start of infusion. Mares infused with 20 micrograms GnRH/h had at least one follicle greater than or equal to 25 mm in 7.4 +/- 1.3 (mean +/- SEM) days following the start of infusion, and ovulated in 12.0 +/- 0.7 days. In the 2-microgram-GnRH/h treatment group, a 25-mm follicle was detected in 5.7 +/- 0.7 days, and ovulation occurred after 10.0 +/- 0.3 days of infusion. Ovulation in every instance was followed by a functional luteal phase, as indicated by the profiles of progesterone secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Color Doppler transrectal ultrasound was used to evaluate blood flow area in the wall of dominant anovulatory follicles versus ovulatory follicles in mares during the transition between anovulatory and ovulatory seasons. Daily examinations were done in 11 control mares toward the end of the anovulatory season. In 13 separate mares, follicular fluid was collected from 30-mm follicles, and blood flow areas from control mares were used as a basis for designating the sampled follicle as either anovulatory or ovulatory. Blood flow area in the controls ranged from 0.18 to 0.35 cm(2) in six mares on the day of a 30-mm anovulatory follicle and from 0.25 to 0.86 cm(2) in 11 mares on the day of a 30-mm ovulatory follicle; the ranges did not overlap except for one follicle. In the controls, mean blood flow area was lower (P < 0.05) in the anovulatory group than in the ovulatory group for each day beginning with the first Doppler examination at 25 mm. For plasma LH in controls, an effect of follicle group (P < 0.0001) and an interaction (P < 0.0001) of group by day reflected lower (P < 0.05) concentrations in the anovulatory group on Days -6, -2, and 5-8 (Day 0 = 30-mm follicle). For plasma FSH, an interaction (P < 0.0001) reflected higher (P < 0.05) concentrations in the anovulatory group on Days -3 and 1-4. More (P < 0.05) statistically identified FSH surges occurred in the anovulatory group during Days -7 to 8. In the sampled mares, follicular-fluid concentrations of estradiol, free insulin-like growth factor-1, inhibin-A, and vascular endothelial growth factor were lower (P < 0.05) in 30-mm designated anovulatory follicles than in 30-mm designated ovulatory follicles. Results were interpreted as follows: 1) The future anovulatory dominant-sized follicle developed under an LH deficiency, 2) the LH deficiency led to reductions in blood flow area and in concentrations of follicular-fluid factors, and 3) the reduction in follicle production of FSH suppressors resulted in higher plasma FSH concentrations.  相似文献   

20.
Since results with using sulpiride and domperidone are conflicting and since both have not been tested at the same time, the aim of this study was to compare the efficacy of these substances for the induction of ovulation in deep anestrous mares in the same experimental conditions and to determine their fertility after artificial insemination (AI) at the induced estrus. Twenty-six non-pregnant, non-lactating standardbred anestrous mares were randomly assigned to three groups and treated daily for 25 days (from February 3rd to February 28th) with either sulpiride (1 mg/kg of body weight im SID, n = 10), or domperidone (1 mg/kg po SID, n = 10); 6 animals were used as control. The beginning of the transition period and the first ovulation were hastened in sulpiride (16.4 ± 0.8 days) but not in domperidone (46.0 ± 3.3 days) treated mares (P < 0.05). The diameter of the largest follicle was affected by treatment, time and interaction of treatment-by-day (P < 0.05) and significantly increased in the sulpiride group (P < 0.05). Although a main effect of treatment on plasma LH concentration was not observed (P = 0.06), time and interaction of treatment-by-day were statistically significant (P < 0.05). The interval from the beginning of treatment to first ovulation was shorter (P < 0.05) in the sulpiride group (36.9 ± 2.5 days) than in the domperidone (74.7 ± 3.3 days) and control (81.4 ± 3.1) groups. The establishment of pregnancy was significantly (P < 0.05) hastened in sulpiride (61.0 ± 35.2 days) but not in domperidone (83.0 ± 44.0 days) treated mares. Treated mares not pregnant after the first AI, showed normal estrous cycles with regular interovulatory intervals (P > 0.05). It was concluded that sulpiride is effective in advancing the beginning of transition period and the first ovulation whereas domperidone is successful only in some mares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号