首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A series of longer analogues of the C-peptide of RNAse A has been synthesized with the aim of assessing the helix induction potential in water of α-methyl, α-amino acids at the N-terminus of the chain. The circular dichroism data indicate that one isovaline residue is effective in increasing the helix content of the 13-residue peptide by about 7%.  相似文献   

2.
-Methylspermine and ,-dimethylspermine were synthesized in high overall yields starting from N-(benzyloxycarbonyl)-3-aminobutanol in order to study polyamine biochemistry in vitro and in vivo.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 2, 2005, pp. 200–205.Original Russian Text Copyright © 2005 by Grigorenko, Vepsalainen, Jarvinen, Keinanen, Alhonen, Janne, Khomutov.  相似文献   

3.
Fucosyltransferases (FTs) and various glycosidases that are involved in the biosynthesis or degradation of SSEA-1 (Lex) antigens and their precursors in the CNS are developmentally regulated. In forebrain and cerebellum with lactosamine (LacNAc) as acceptor the FT activity was maximal at P15–P22, but with the glycolipid substrate paragloboside (nLc4) the maximal activity in cerebellum was obtained at P10–P15. The FT activity, with these substrates, was insensitive to N-ethylmaleimide (NEM) and the glycolipid product had an α1,3 linkage (Fuc to GlcNAc) suggesting similarities of the investigated enzyme to the cloned human and rat FT IV. However, the observation of different patterns of FT activity in isoelectrofocused fractions (pH 3.5–10) with different types of acceptors, and the differential expression of Lex containing glycolipids and glycoproteins during development strongly suggest the presence of more than one type of FT during development. Data on developmental expression of the hydrolytic enzymes, α-L-fucosidase, β-D-galactosidase and α-D-galactosidase, which can potentially hydrolyse SSEA-1 or its precursors, support the notion that SSEA-1 expression is the result of a dynamic balance between the activity of transferases and hydrolases. © 1998 Rapid Science Ltd  相似文献   

4.
Anosmin is an extracellular matrix protein, and genetic defects in anosmin result in human Kallmann syndrome. It functions in neural crest formation, cell adhesion, and neuronal migration. Anosmin consists of multiple domains, and it has been reported to bind heparan sulfate, FGF receptor, and UPA. In this study, we establish cell adhesion/spreading assays for anosmin and use them for antibody inhibition analyses to search for an integrin adhesion receptor. We find that α5β1, α4β1, and α9β1 integrins are needed for effective adhesive receptor function in cell adhesion and cell spreading on anosmin; adhesion is inhibited by both RGD and α4β1 CS1-based peptides. This identification of anosmin-integrin adhesion receptors should facilitate studies of anosmin function in cell and developmental biology.  相似文献   

5.
The crystal structures of α-D-glucopyranosyl β-D-psicofuranoside and α-D-galactopyranosyl β-D-psicofuranoside were determined by a single-crystal X-ray diffraction analysis, refined to R(1)=0.0307 and 0.0438, respectively. Both disaccharides have a similar molecular structure, in which psicofuranose rings adopt an intermediate form between (4)E and (4)T(3). Unique molecular packing of the disaccharides was found in crystals, with the molecules forming a layered structure stacked along the y-axis.  相似文献   

6.
A new endoperoxysesquiterpene lactone, 10α-hydroxy-1α,4α-endoperoxy-guaia-2-en-12,6α-olide (1), together with a flavanone, eriodictyol (2), and two flavone glycosides, acacetin-7-O-β-d-glucopyranoside (3) and acacetin-7-O-α-l-rhamopyranoside (4), were isolated from the methanol extract of Chrysanthemum morifolium flowers by a bioassay-guided fractionation. Compound 1 showed strong inhibitory effects against α-glucosidase and lipase activities, with IC50 values of 229.3 and 161.0 μM, respectively. The flavone glycosides 3 and 4 inhibited both α-glucosidase and α-amylase, while flavanone 2 was only effective against α-amylase.  相似文献   

7.
Chaperone-like activities of α-crystallin, αB-crystallin and proline were studied using a test system based on aggregation of UV-irradiated glycogen phosphorylase b (Phb) from rabbit skeletal muscle. The biphasic character of the dependence of the initial rate of aggregation (v(agg)) of UV-irradiated Phb on the concentration of α-crystallin or αB-crystallin is indicative of the existence of two types of chaperone-protein substrate complexes differing significantly in affinity between the components of the complex. The dependence of v(agg) on the proline concentration is sigmoid (Hill coefficient is equal to 1.6) suggesting that the positive cooperative interactions between the proline molecules bound on the surface of the protein particles occur. When studying the combined suppressive action of α-crystallin and proline on aggregation of UV-irradiated Phb, a slight antagonism between proline used at a fixed concentration (0.15M) and α-crystallin was observed. At higher concentration of proline (0.5M) each chaperone acts independent of one another.  相似文献   

8.
9.
We have successfully cloned an α-galactosidase gene from a rice cDNA library and transformed it into Escherichia coli BL21. It was subsequently cloned to the pPIC9K vector and expressed in Pichia pastoris. A selected clone was found to result in high production yield of the galactosidase enzyme. The secreted enzyme was purified, and it revealed as a major protein band on an SDS-PAGE gel. The optimal pH value, enzyme stabilities, and substrate specificity were studied. The enzyme specificity toward the terminal α1→6, 1→4, and 1→3 linked galactosyl residue from various substrates was investigated. By determining the Michelis constant (Km) of the enzyme for melibiose, raffinose, and stachyose, our results showed that melibiose was hydrolyzed faster than raffinose, whereas the published data reported a reversed sequence, raffinose > melibiose. The enzyme also showed the ability of converting B red blood cells into O red cells. The objective of this work is to develop the Pichia system to produce a large quantity of enzyme for blood cell conversion for transfusion.  相似文献   

10.
Selective acetalation of α,α-trehalose with ethyl or methyl isopropenyl ether and toluene-p-sulphonic acid in N,N-dimethylformamide gave the 4,6-isopropylidene acetal as the major product, isolated as its hexa-acetate 1 (38%). The gluco-galacto analogue 6 of α,α-trehalose was synthesized from 1 by the sequence: hydrolysis of the isopropylidene group with trifluoroacetic acid, mesylation of the resulting diol, benzoate displacement, and saponification of the product. Deacetylation of 1 followed by benzylation and hydrolysis of the acetal group furnished a hexa-O-benzyl derivative 9. Tosylation of the primary hydroxyl group in 9, treatment of the product with tetrabutylammonium fluoride in acetonitrile, and subsequent catalytic hydrogenolysis of the benzyl groups gave 6-deoxy-6-fluoro-α,α-trehalose (12). Compounds 6 and 12 and 6-deoxy-6-iodo-α,α-trehalose are substrates for cockchafer trehalase, but have very low Vmax values.  相似文献   

11.
Ion-exchange chromatography of dialyzed human plasma and of buffer extracts of acetone-dried powder from human liver was used to analyze 13 different plasma proteins which are synthesized in the liver. Specific intracellular forms which differ from the plasma forms were found for transferrin, α1-acid glycoprotein, α1-antitrypsin, and albumin. The intracellular forms were labeled earlier than the plasma forms, when liver slices were incubated with radioactive leucine, suggesting that they are precursor forms of the proteins in the bloodstream. The liver form of transferrin was found to have the same molecular weight and N-terminus as the plasma form, but it differed from the plasma form by the absence of sialic acid. For α1-acid glycoprotein two different liver forms were observed, both of which had lower molecular weights than the plasma form. One of these liver forms was analyzed further. Its polypeptide chain was found to have a blocked N-terminus, as does the plasma form. However, in contrast to the plasma form, it did not contain sialic acid. Its content of N-acetyl glucosamine was about one-third and the content of neutral hexoses about two-thirds of that found in the plasma form. Circular dichroism spectra were similar for liver and plasma forms and indicated a predominant β structure with very little α-helix content for both.  相似文献   

12.
Most neurons co-express two catalytic isoforms of Na,K-ATPase, the ubiquitous α1, and the more selectively expressed α3. Although neurological syndromes are associated with α3 mutations, the specific role of this isoform is not completely understood. Here, we used electrophysiological and Na+ imaging techniques to study the role of α3 in central nervous system neurons expressing both isoforms. Under basal conditions, selective inhibition of α3 using a low concentration of the cardiac glycoside, ouabain, resulted in a modest increase in intracellular Na+ concentration ([Na+]i) accompanied by membrane potential depolarization. When neurons were challenged with a large rapid increase in [Na+]i, similar to what could be expected following suprathreshold neuronal activity, selective inhibition of α3 almost completely abolished the capacity to restore [Na+]i in soma and dendrite. Recordings of Na,K-ATPase specific current supported the notion that when [Na+]i is elevated in the neuron, α3 is the predominant isoform responsible for rapid extrusion of Na+. Low concentrations of ouabain were also found to disrupt cortical network oscillations, providing further support for the importance of α3 function in the central nervous system. The α isoforms express a well conserved protein kinase A consensus site, which is structurally associated with an Na+ binding site. Following activation of protein kinase A, both the α3-dependent current and restoration of dendritic [Na+]i were significantly attenuated, indicating that α3 is a target for phosphorylation and may participate in short term regulation of neuronal function.  相似文献   

13.
We have found that plastoquinone-A (PQ-A) and α-tocopherol (α-Toc) increased the reduction level of the high-potential form of cytochrome b-559 (cyt. b-559 HP) and α-tocopherol quinone (α-TQ) decreased the level of this cytochrome form in Scenedesmus obliquus wild-type, while the investigated prenyllipids were not active in the restoration of the cyt. b-559 HP form in Scenedesmus PS28 mutant and Synechococcus 6301 (Anacystis nidulans) where the cyt. b-559 HP form is naturally not present. Among the tested prenyllipids, α-TQ quenched fluorescence in thylakoids of S. obliquus wild-type, the PS28 mutant and tobacco to the highest extent, while PQ-A was less effective in this respect. α-Tocopherol showed the opposite effect to α-TQ and it was rather small. The fluorescence quenching measurements of thylakoids in the presence of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) showed that the α-Toc and FCCP (carbonylcyanide-p-trifluoromethoxy-phenyl-hydrazone) did not quench non-photochemically chlorophyll fluorescence while PQ-9 and α-TQ were effective fluorescence quenchers at higher concentrations (> 15 μM). However, at the lower α-TQ concentrations where its effective fluorescence quenching was found in DCMU-free samples, there was nearly no quenching effect by α-TQ observed in DCMU-treated thylakoids. This suggested a specific, not non-photochemical, DCMU sensitive, fluorescence quenching of photosystem II (PSII) at low α-TQ concentrations which is probably connected with the cyclic electron transport around PSII and might have a function of excess light energy dissipation. The effects of α-TQ on PSII resembled those of FCCP under many respects which might suggest similar mechanism of action of these compounds on PSII, i.e. the catalytic deprotonation and/or redox changes of some components of PSII such as the water splitting system, tyrosine D, Chlz or cytochrome b-559.  相似文献   

14.
α-d-Glucopyranosyl α-d-xylopyranoside has been synthesized in 49% yield by treatment of 2,3,4-tri-O-benzyl-α-d-xylopyranosyl bromide with 2,3,4,6-tetra-O-acetyl-d-glucopyranose in nitromethane-benzene with mercuric cyanide and bromide, followed by catalytic hydrogenolysis and O-deacetylation. Condensation with 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide in acetonitrile-dichloromethane with mercuric cyanide, followed by catalytic hydrogenolysis and O-deacetylation, gave α-d-glucopyranosyl α-d-mannopyranoside and β-d-glucopyranosyl β-d-mannopyranoside in 44 and 25% yield, respectively. The mixture was resolved by column chromatography of the fully acetylated derivatives. Selective acetylation of the di-O-benzylidene derivative of trehalose with N-acetylimidazole, followed by oxidation with dimethyl sulfoxide-acetic anhydride at C-3 and stereoselective reduction gave, after removal of the protecting groups, α-d-allopyranosyl α-d-glucopyranoside in 20% overall yield. The structure of the compounds was confirmed by 1H- and 13C-n.m.r., and mass spectrometry. α-d-Glucopyranosyl α-d-xylopyranoside and α-d-allopyranosyl α-d-glucopyranoside are less efficient substrates than trehalose for cockchafer trehalase, but α-d-glucopyranosyl α-d-mannopyranoside is a competitive inhibitor of the enzyme.  相似文献   

15.
Four analogs of the carotenoprotein α-crustacyanin have been prepared by reconstitution with the all-transisomer of four new carotenoids (10-F, 10,10′-F2and 14-F-astaxanthins, and 10′-F-adonirubin). All four blue carotenoproteins exhibit absorption spectra similar to that of the natural α-crustacyanin with λmaxin the range of 613–625 nm. Different rates of pigment formation and yields were noted. F NMR spectra of pigments derived from the three 10F carotenoids have been recorded. Fourcisisomers of 14-F-astaxanthin and one of 10′-F-adonirubin were also isolated.  相似文献   

16.
Tsurupa G  Mahid A  Veklich Y  Weisel JW  Medved L 《Biochemistry》2011,50(37):8028-8037
Our previous studies revealed that in fibrinogen the αC-domains are not reactive with their ligands, suggesting that their binding sites are cryptic and become exposed upon its conversion to fibrin, in which these domains form αC polymers. On the basis of this finding, we hypothesized that polymerization of the αC-domains in fibrin results in the exposure of their binding sites and that these domains adopt the physiologically active conformation only in αC-domain polymers. To test this hypothesis, we prepared a recombinant αC region (residues Aα221-610) including the αC-domain (Aα392-610), demonstrated that it forms soluble oligomers in a concentration-dependent and reversible manner, and stabilized such oligomers by covalently cross-linking them with factor XIIIa. Cross-linked Aα221-610 oligomers were stable in solution and appeared as ordered linear, branching filaments when analyzed by electron microscopy. Spectral studies revealed that the αC-domains in such oligomers were folded into compact structures of high thermal stability with a significant amount of β-sheets. These findings indicate that cross-linked Aα221-610 oligomers are highly ordered and mimic the structure of fibrin αC polymers. The oligomers also exhibited functional properties of polymeric fibrin because, in contrast to the monomeric αC-domain, they bound tPA and plasminogen and stimulated activation of the latter by the former. Altogether, the results obtained with cross-linked Aα221-610 oligomers clarify the structure of the αC-domains in fibrin αC polymers and confirm our hypothesis that their binding sites are exposed upon polymerization. Such oligomers represent a stable, soluble model of fibrin αC polymers that can be used for further structure-function studies of fibrin αC-domains.  相似文献   

17.
Voltage-activated complexation is the process by which a transmembrane potential drives complex formation between a membrane-embedded channel and a soluble or membrane-peripheral target protein. Metabolite and calcium flux across the mitochondrial outer membrane was shown to be regulated by voltage-activated complexation of the voltage-dependent anion channel (VDAC) and either dimeric tubulin or α-synuclein (αSyn). However, the roles played by VDAC's characteristic attributes—its anion selectivity and voltage gating behavior—have remained unclear. Here, we compare in vitro measurements of voltage-activated complexation of αSyn with three well-characterized β-barrel channels—VDAC, MspA, and α-hemolysin—that differ widely in their organism of origin, structure, geometry, charge density distribution, and voltage gating behavior. The voltage dependences of the complexation dynamics for the different channels are observed to differ quantitatively but have similar qualitative features. In each case, energy landscape modeling describes the complexation dynamics in a manner consistent with the known properties of the individual channels, while voltage gating does not appear to play a role. The reaction free energy landscapes thus calculated reveal a non-trivial dependence of the αSyn/channel complex stability on the surface density of αSyn.  相似文献   

18.
Direct and selective terminal oxidation of medium-chain n-alkanes is a major challenge in chemistry. Efforts to achieve this have so far resulted in low specificity and overoxidized products. Biocatalytic oxidation of medium-chain n-alkanes – with for example the alkane monooxygenase AlkB from P. putida GPo1- on the other hand is highly selective. However, it also results in overoxidation. Moreover, diterminal oxidation of medium-chain n-alkanes is inefficient. Hence, α,ω-bifunctional monomers are mostly produced from olefins using energy intensive, multi-step processes.By combining biocatalytic oxidation with esterification we drastically increased diterminal oxidation upto 92 mol% and reduced overoxidation to 3% for n-hexane. This methodology allowed us to convert medium-chain n-alkanes into α,ω-diacetoxyalkanes and esterified α,ω-dicarboxylic acids. We achieved this in a one-pot reaction with resting-cell suspensions of genetically engineered Escherichia coli.The combination of terminal oxidation and esterification constitutes a versatile toolbox to produce α,ω-bifunctional monomers from n-alkanes.  相似文献   

19.
Morphology, pH and carbohydrate hydrolyzing enzyme activities of the Sunn pest gut were investigated in this study. The Sunn pest midgut is separated into the first ventriculus (V1), the second ventriculus (V2), the third ventriculus (V3) and the fourth ventriculus (V4). The first three regions of the midgut were acidic (pH 5.0–5.2), while the fourth region of the midgut and rectum was moderately acidic (pH 6.2–6.4 and pH 6.5–6.8, respectively). Activity of α-amylase was highest at pH 6 to 7, which correlates with the pH of the midgut. The optimum pH for α-glucosidase and β-glucosidase is 4 to 6 and 5 to 6, respectively. Different gut regions had different carbohydrate hydrolyzing enzyme activities. Carbohydrate hydrolyzing enzyme activities in V2 and V4 were the same, but activities in V1 were slightly higher than in V2 and V4 and lower than in V3. Levels of α- and β-glucosidase activities were similar in various midgut sections. However, the V3 had the highest activity followed by V4, V2, V1, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号