首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Using two PGF treatments 14 days apart as a way to enhance estrus detection rate following the 2nd treatment is a reproductive management tool that continues to be used on large dairy farms. In one study, in cows with a functional CL and a dominant follicle, treatment with cloprostenol vs. dinoprost resulted in greater peripheral estradiol concentrations. The objective of the present study was to determine if cloprostenol could enhance pregnancy rates of cows in a large dairy herd using a PGF program for 1st artificial insemination (AI). Lactating dairy cows (n = 4549) were randomly assigned to receive two treatments of either 500 μg cloprostenol or 25 mg dinoprost 14 days apart, with the 2nd treatment on the 1st day of the voluntary waiting period (57 DIM). Cows detected in estrus within 5 days after the 2nd treatment were inseminated. There was no effect of treatment on day of estrus detection, with 78% of cows inseminated on Days 3 or 4 following treatment. Cloprostenol increased (P < 0.01) estrus detection rates in 1st parity cows compared to dinoprost, 42.4 vs. 34.0%. In cows inseminated on Days 3 or 4 after treatment, cloprostenol increased (P = 0.05) conception rates compared to dinoprost, 38.3 vs. 34.4%. When treatments and parities were combined, conception rates increased (P < 0.02) with interval after treatment (27.0, 36.4, and 44.5% for Days 1 or 2, Days 3 or 4, and Day 5, respectively). Cloprostenol increased (P = 0.02) overall pregnancy rate compared to dinoprost, 14.4 vs. 12.2%. In summary, cloprostenol increased fertility in 1st parity cows inseminated on Days 3 or 4 following treatment and subsequently enhanced pregnancy rates of 1st parity lactating dairy cows compared to dinoprost. Fertility appeared greater in cows expected to have had a young antral ovarian follicle at treatment.  相似文献   

2.
Lactating Friesian dairy cows (2nd-4th parity) which calved in spring (N = 7) or autumn (N = 15) were used. Their ovaries were examined by ultrasound scanning and blood samples were obtained daily for progesterone and oestradiol concentrations from the 5th day after calving until the first post-partum ovulation occurred. Five autumn-calving cows selected at random were bled every 15 min over a 6-h period on 1 day each week for 4 weeks after calving to assess the patterns of LH secretion. Follicular development during the post-partum anoestrous period was characterized by the growth and regression of small (less than or equal to 4 mm) and medium-sized (5-9 mm) follicles, until a dominant follicle (greater than 10 mm) was detected. The first detected dominant follicle ovulated in 14 cows, became cystic in 4 cows (all in autumn), and failed to ovulate in 1 cow. It was not possible to detect a dominant follicle in 3 cows due to scanning difficulties. The post-partum interval to detection of the first dominant follicle (mean +/- s.d.) was shorter (P less than 0.05) in autumn (6.8 +/- 1.8 days) than in spring (20 +/- 10.1 days). However, there was no significant difference between the respective intervals to first ovulation (autumn 27.4 +/- 25.9 and spring 27.3 +/- 18.9 days). Autumn-calved cows which had cysts had longer (P less than 0.001) intervals to first ovulation (58.2 +/- 23.5 days) than did normal cows (12.0 +/- 2.5 days). All cows with cysts had twin ovulations at their first post-partum ovulation. A pulsatile pattern of LH secretion was detected in the first week post-partum and LH pulse frequency was 2-3 per 6-h period in Weeks 1 and 2 post partum and increased to 5-7 pulses per 6-h period in the presence of a dominant or cystic follicle. Concentrations of progesterone in plasma during post-partum anoestrus were usually low (less than 0.2 ng/ml); oestradiol concentrations were also low (less than 5 pg/ml), but higher values (5-110 pg/ml) were observed in cows that had a dominant or a cystic follicle.  相似文献   

3.
The purpose of the present study was to hasten the resumption of ovarian activity early postpartum in lactating dairy cows, using equine chorionic gonadotropin (eCG), to enhance follicular growth, followed by hCG, to induce ovulation. Primiparous Holstein dairy cows (n=21) were assigned equally into eCG, eCG-hCG and Control groups. Cows in the eCG and eCG-hCG groups received an i.m. injection of eCG (500 IU Folligon?) on Day 6 postpartum. Cows in the eCG-hCG group were also given an i.m. injection of hCG (500 IU Chorulon?), once dominant follicle reached the diameter of 13-16 mm following eCG injection. Cows in Control group did not receive any treatment. Daily blood sampling and ultrasound examination were conducted, starting at Day 6 postpartum until confirming the third ovulation. Follicles ≥10 mm in diameter were detected on Day 11.5±1.48, 10.1±0.52 and 11.1±1.36 after calving in Control, eCG and eCG-hCG groups, respectively (P>0.05). The first wave dominant follicle ovulated in 71.4% of cows treated with eCG and eCG-hCG. In contrast, none of the first wave dominant follicles ovulated in Control cows. By Day 20 postpartum, all cows in eCG group, 6/7 cows in eCG-hCG group and none of the cows in Control group ovulated (P<0.05). Short estrous cycles (≤16 days) were detected in 2/7, 1/7 and 6/7 cows in eCG, eCG-hCG and control groups, respectively (P<0.05). In conclusion, injection of eCG on Day 6 postpartum could assist the early resumption of ovarian activity by enhancing ovarian follicle growth and early ovulation in postpartum cows. In this context, subsequent hCG injection may not provide any more beneficial effect.  相似文献   

4.
This study examined the effects of administering progesterone and oestradiol benzoate (ODB) during mid-dioestrus, on ovarian follicular dynamics in cattle. Twelve cycling cows were used in a 4 x 4 latin square design, with the 4 treatments being initiated on Day 13 of the cycle (oestrus = Day 0) and comprising intravaginal insertion for 5 days of: (i) a progesterone releasing device (CIDR; 'P4'); (ii) a CIDR device with a gelatin capsule containing 10 mg ODB and 1 g lactose (CIDIROL; 'P4/ODB') attached; (iii) a placebo CIDR device with the 10 mg ODB capsule (ODB); and, (iv) a placebo CIDR device alone (CTRL). The ovaries of each cow were examined daily by transrectal ultrasonography from Day 7 of the cycle until subsequent ovulation. Blood samples were collected daily from Day 11, and at intervals of 2-4 h during the 24 h period either side of treatment initiation. The second dominant follicle (DF2) emerged on Day 10.7 +/- 0.2 (mean +/- SEM), and was 8.5 +/- 0.2 mm in diameter by Day 13. The DF2 developed through to ovulation (2-wave cycles) in half of the animals in the CTRL group; while in the other half of cases, the ovulatory follicle originated from the third follicle wave that emerged on Day 17.2 +/- 0.4. Administration of a CIDR device alone (P4 group) did not alter the 1:1 ratio of 2 and 3-wave cycles, but the third dominant follicle (DF3) in those cows with 3-wave cycles emerged earlier on Day 15.6 +/- 0.2. In contrast, the DF2 of every animal in the ODB and P4/ODB groups became atretic and was replaced by a DF3 which emerged 4.0 +/- 0.3 days later. The effects of ODB on luteal function were limited to an earlier decline in plasma progesterone concentrations from 2 to 4 days after device insertion and a reduction in diameter of the corpus luteum when administered concurrently with progesterone. Intravaginal administration of 10 mg ODB on Day 13 of the oestrous cycle, with or without progesterone, was effective in promoting follicle wave turnover. In the absence of ODB, progesterone administration alone (P4 group) did not alter the ratio of animals with 2 or 3-wave cycles from that observed in animals in the CTRL group, but did advance the timing of subsequent follicle wave emergence in those animals with 3-wave cycles.  相似文献   

5.
The objectives of this study were to investigate the effect of a synthetic GnRH-agonist (Deslorelin) implant on CL function and follicle dynamics when administered 48 h after PGF2 alpha, in a timed-insemination protocol, and to determine if the incorporation of a Deslorelin implant into a timed-insemination protocol to synchronize ovulation would be beneficial to the establishment of pregnancy. In Experiment 1, 15 non lactating cyclic Holstein cows received Buserelin (8 micrograms, i.m.) on Day-9, Lutalyse (25 mg, i.m.) on Day-2, and then on Day 0 received either a Deslorelin implant (700 micrograms, s.c.; n = 5), Buserelin (8 micrograms, i.m.; n = 5), or no treatment (control; n = 5). Blood samples were collected on Days-9, -2, 0 and thereafter daily until the next ovulation. Ovaries were scanned by ultrasound on Days-9, -2, 0, 1 (day of ovulation) and 3 times a week thereafter until a subsequent ovulation. From Days 0 to 15, the rate of increase of plasma progesterone (P4) was greater (P < 0.01) for Deslorelin than for control and Buserelin. Establishment of the first-wave dominant follicle (FWDF) as a Class 3 (> 9 mm) follicle was delayed (P < 0.01) with Deslorelin (14.2 +/- 1.3 d) compared with the control (4.6 +/- 1.3 d) and Buserelin (5.0 +/- 1.5 d) treatments. The FWDF resumed growth after Day 13 in all 5 Deslorelin-treated cows, and 2 cows ovulated spontaneously. In 1 Deslorelin-treated cow, the FWDF regressed, and a second-wave dominant follicle ovulated, while 2 other Deslorelin cows failed to ovulate until after Day 36. The cumulative numbers of Class 2 and 3 follicles was lowest in the Deslorelin group (P < 0.01), while the cumulative number of Class 1 follicles was highest (Deslorelin > Buserelin > Control; P < 0.01). The number of days to CL-regression and days to subsequent estrus did not differ (P > 0.05) among treatments. In Experiment II, 16 lactating potentially subfertile (body condition score 2.25) cows received Cystorelin (100 micrograms, i.m.; Day-9), Lutalyse (25 mg, i.m.; Day-2), and either a Cystorelin injection (100 micrograms, i.m.; n = 8) or Deslorelin implant (700 micrograms, s.c.; n = 8) on Day 0 and inseminated 16 h later. Deslorelin-treated cows had a higher plasma P4 concentration between Days 0 and 16 (P < 0.05) than the 2 other groups, and 5 of the 8 cows in this group were pregnant (Day 45, palpation) compared with 1 of 8 cows in the Cystorelin group (P < 0.05). Incorporation of a Deslorelin implant into a timed-insemination protocol enhanced the pregnancy rate in cows of poor body condition. The results support the hypothesis that enhanced CL function and delayed establishment of the first-wave dominant follicle may enhance embryo survival.  相似文献   

6.
The objective of this study was to determine whether plasma concentrations of progesterone (P4) from a controlled internal drug releasing (CIDR) device (approximately 2 ng/ml) were adequate to sustain a persistent first wave dominant follicle (FWDF) in low body condition (LBC, body condition score [BCS] 1 = lean, 5 = fat [2.3 +/- 0.72, n = 4]) compared with high body condition (HBC, BCS = 4.4 +/- 0.12, n = 4) nonlactating dairy cows. On Day 7 of the estrous cycle (Day 0 = estrus), cows were treated with PGF2 alpha (25 mg i.m. Lutalyse, P.M., and Day 8 A.M.) and a used CIDR device containing P4 (1.2 g) was inserted into the vagina until ovulation or Day 16. Plasma was collected for P4 and estradiol (E2) analyses from Day 5 to Day 18 (or ovulation), and ovarian follicles were monitored daily by ultrasonography. Mean concentrations of plasma P4 were greater in HBC than LBC cows between Days 5 and 7 (4.6 > 3.4 +/- 0.37 ng/ml; P < 0.04). All LBC cows maintained the first wave dominant follicle and ovulated after removal of the CIDR device (18.3 +/- 0.3 d, n = 3; Cow 4 lost the CIDR device on Day 11 and ovulated on Day 15), whereas in the HBC cows ovulation occurred during the period of CIDR exposure (11.3 +/- 0.3 d; n = 3; a fourth cow developed a luteinized first wave dominant follicle that did not ovulate during the experimental protocol on Day 19). Mean day of estrus was 17 +/- 0.4 for LBC (n = 3) and 10 +/- 0.4 for HBC (n = 3) cows. Sustained concentrations of plasma E2 (12.9 +/- 2.8 pg/ml; Days 8 to 17) in LBC cows reflected presence of an active persistent first wave dominant follicle. The differential effect of BCS on concentrations of plasma P4 (y = ng/ml) was reflected by the difference (P < 0.01) in regressions: yLBC = 19.9 - 3.49x + 0.166x2 vs yHBC = 37.3 - 7.04x + 0.340x2 (x = day of cycle, Days 7 to 12). Although P4 concentration was greater for HBC cows prior to Day 8, a greater clearance of plasma P4 released from the CIDR device in the absence of a CL altered follicular dynamics, leading to premature ovulation in the HBC cows. A greater basal concentration of P4 was sustained in LBC cows that permitted maintenance of a persistent first wave dominant follicle.  相似文献   

7.
Ovsynch-type synchronization of ovulation protocols have suboptimal synchronization rates due to reduced ovulation to the first GnRH treatment and inadequate luteolysis to the prostaglandin F (PGF) treatment before timed artificial insemination (TAI). Our objective was to determine whether increasing the dose of the first GnRH or the PGF treatment during the Breeding-Ovsynch portion of Double-Ovsynch could improve the rates of ovulation and luteolysis and therefore increase pregnancies per artificial insemination (P/AI). In experiment 1, cows were randomly assigned to a two-by-two factorial design to receive either a low (L) or high (H) doses of GnRH (Gonadorelin; 100 vs. 200 μg) and a PGF analogue (cloprostenol; 500 vs. 750 μg) resulting in the following treatments: LL (n = 263), HL (n = 277), LH (n = 270), and HH (n = 274). Transrectal ultrasonography and serum progesterone (P4) were used to assess ovulation to GnRH1, GnRH2, and luteal regression after PGF during Breeding-Ovsynch in a subgroup of cows (n = 651 at each evaluation). Pregnancy status was assessed 29, 39, and 74 days after TAI. In experiment 2, cows were randomly assigned to LL (n = 220) or HH (n = 226) treatment as described for experiment 1. For experiment 1, ovulation to GnRH1 was greater (P = 0.01) for cows receiving H versus L GnRH (66.6% [217/326] vs. 57.5% [187/325]) treatment, but only for cows with elevated P4 at GnRH1. Cows that ovulated to GnRH1 had increased (P < 0.001) fertility compared with cows that did not ovulate (52.2% vs. 38.5%); however, no effect of higher dose of GnRH on fertility was detected. The greater PGF dose increased luteal regression primarily in multiparous cows (P = 0.03) and tended to increase fertility (P = 0.05) only at the pregnancy diagnosis 39 days after TAI. Overall, P/AI was 47.0% at 29 days and 39.7% at 74 days after TAI; P/AI did not differ (P = 0.10) among treatments at 74 days (LL, 34.6%; HL, 40.8%; LH, 42.2%; HH, 40.9%) and was greater (P < 0.001) for primiparous cows than for multiparous cows (46.1% vs. 33.8%). For experiment 2, P/AI did not differ (P = 0.21) between H versus L treatments (44.2% [100/226] vs. 40.5% [89/220]). Thus, despite an increase in ovulatory response to GnRH1 and luteal regression to PGF, there were only marginal effects of increasing dose of GnRH or PGF on fertility to TAI after Double-Ovsynch.  相似文献   

8.
The influence of Buserelin injection and Deslorelin (a GnRH analogue) implants administered on Day 5 of the estrous cycle on plasma concentrations of LH and progesterone (P4), accessory CL formation, and follicle and CL dynamics was examined in nonlactating Holstein cows. On Day 5 (Day 1 = ovulation) following a synchronized estrus, 24 cows were assigned randomly (n = 4 per group) to receive 2 mL saline, i.m. (control), 8 micrograms, i.m. Buserelin or a subcutaneous Deslorelin (DES) implant in concentrations of 75 micrograms, 150 micrograms, 700 micrograms or 2100 micrograms. Blood samples were collected (for LH assay) at 30-min intervals for 2 h before and 12 h after GnRH-treatment from cows assigned to Buserelin, DES-700 micrograms and DES-2100 micrograms treatments and thereafter at 4-h intervals for 48 h. Beginning 24 h after treatment, ovaries were examined by ultrasound at 2-h intervals until ovulation was confirmed. Thereafter, ultrasonography and blood sampling (for P4 assay) was performed daily until a spontaneous ovulation before Day 45. A greater release of LH occurred in response to Deslorelin implants than to Buserelin injection (P < 0.01). Basal levels of LH between 12 and 48 h were higher in DES-700 micrograms group than in DES-2100 micrograms and Buserelin (P < 0.05). The first wave dominant follicle ovulated in all cows following GnRH treatment. Days to CL regression did not differ between treatments, but return to estrus was delayed (44.2 vs 27.2 d; P < 0.01) in cows of DES-2100 micrograms group. All GnRH treatments elevated plasma P4 concentrations, and the highest P4 responses were observed in the DES-700 micrograms and DES-2100 micrograms groups. The second follicular wave emerged earlier in GnRH-treated than in control cows (9.9 vs 12.8 d; P < 0.01). However, emergence of the third dominant follicle was delayed in cows of DES-2100 micrograms treatment (37.0 d) compared with DES-700 micrograms (22.2 d), Buserelin (17.8 d) or control (19.0 d). In conclusion, Deslorelin implants of 700 micrograms increased plasma P4 and LH concentrations and slightly delayed the emergence of the third dominant follicle. On the contrary, Deslorelin implants of 2100 micrograms drastically altered the P4 profiles and follicle dynamics.  相似文献   

9.
The objectives were to evaluate pregnancy per AI (P/AI) of dairy cows subjected to the 5-day timed AI protocol under various synchronization and luteolytic treatments. Cows were either presynchronized or received supplemental progesterone during the synchronization protocol, and received a double luteolytic dose of PGF, either as one or two injections. In Experiment 1, dairy cows (n = 737; Holstein = 250, Jersey = 80, and crossbred = 407) in two seasonal grazing dairy farms were randomly assigned to one of four treatments in a 2 × 2 factorial arrangement. The day of AI was considered study Day 0. Half of the cows were presynchronized (G6G: PGF on Day −16 and GnRH on Day −14) and received the 5-day timed AI protocol using 1 mg of cloprostenol, either as a single injection (G6G-S: GnRH on Day −8, PGF on Day −3, and GnRH + AI on Day 0) or divided into two injections of 0.5 mg each (G6G-T: GnRH on Day −8, PGF on Day −3 and −2, and GnRH + AI on Day 0). The remaining cows were not presynchronized and received a controlled internal drug-release (CIDR) insert containing progesterone from GnRH to the first PGF injection of the 5-day timed AI protocol, and 1 mg of cloprostenol either as a single injection on Day -3 (CIDR-S) or divided into two injections of 0.5 mg each on Days -3 and -2 (CIDR-T). Ovaries were examined by ultrasonography on Days −8 and −3 and plasma progesterone concentrations were determined on Days −3 and 0. In Experiment 2, 655 high-producing Holstein cows had their estrous cycle presynchronized with PGF at 46 ± 3 and 60 ± 3 days postpartum and were randomly assigned to receive 50 mg of dinoprost during the 5-day timed AI protocol, either as a single injection or divided into two injections of 25 mg each. Pregnancies per AI were determined on Days 35 and 64 after AI in both experiments. In Experiment 1, presynchronization with G6G increased the proportion of cows with a CL on Day −8 (80.6 vs. 58.8%), ovulation to the first GnRH of the protocol (64.2 vs. 50.2%), and the presence (95.6 vs. 88.4%) and number (1.79 vs. 1.30) of CL at PGF compared with CIDR cows. Luteolysis was greater for two injections compared to a single PGF injection (two PGF = 95.9 vs. single PGF = 72.2%), especially in presynchronized cows (G6G-T = 96.2 vs. G6G-S = 61.7%). For cows not presynchronized, two PGF injections had no effect on P/AI (CIDR-S = 30.2 vs. CIDR-T = 34.3%), whereas for presynchronized cows, it improved P/AI (G6G-S = 28.7 vs. G6G-T = 45.4%). In Experiment 2, the two-PGF injection increased P/AI on Days 35 (two PGF = 44.5 vs. single PGF = 36.4%) and 64 (two PGF = 40.3% vs. single PGF = 32.6%) after AI. Presynchronization and dividing the dose of PGF (either cloprostenol or dinoprost) into two injections increased P/AI in lactating dairy cows subjected to the 5-day timed AI protocol.  相似文献   

10.
In the present study we investigated the effect of hCG administration on Day 7 (Day 0 = day of standing estrus) to ovulate the dominant follicle of the first wave and the associated increase in progesterone concentration on subsequent superovulatory response in dairy cows. Twenty cyclic lactating cows were allocated at random to 2 groups: control (n = 10) and hCG-treated (n = 10). The ovaries of each cow were scanned using an ultrasound scanner on Day 7, to confirm the presence of the dominant follicle and thereafter every other day until embryo recovery. All cows received a total dose of 400 mg Folltropin-V in decreasing amounts for 5 days (Days 9 to 13) and 35 mg PGF(2alpha) on Day 12. In addition, the treated cows received 1000 IU hCG on Day 7. All cows were inseminated twice during estrus, and the embryos were collected 7 days later by a nonsurgical procedure. Blood smaples were taken at different times of the treatment period for progesterone determination. All cows possessed a dominant follicle at Day 7, and all but one of the hCG-treated cows ovulated the dominant follicle and formed an accessory corpus luteum. Plasma progesterone concentrations were significantly higher (P<0.01) in hCG-treated cows than control cows on the first day of Folltropin treatment and on the day of PGF(2alpha) injection. The mean number of follicles at estrus, the number of ovulations, the total number of embryos and the number of transferable embryos were not different (P>0.05) between control and hCG-treated cows.  相似文献   

11.
The ovaries of 18 post-partum beef suckler cows were examined daily, using ultrasound, from Day 5 post partum until a normal oestrous cycle was completed. Periods of growth and regression of medium-sized (5-9 mm) follicles were identified before one medium follicle became dominant (single large follicle greater than or equal to 10 mm). The mean (+/- s.e.m.) number of days from parturition to detection of the first post-partum dominant follicle was 10.2 +/- 0.5. The first post-partum dominant follicle ovulated in 2/18 (11%) cows. The interval from calving to first ovulation (mean +/- s.e.m. = 35.9 +/- 3.3 days) was characterized by the growth and regression of a variable number (mean = 3.2 +/- 0.2; range 1-6) of dominant follicles. The maximum diameter of the dominant follicle increased as the cows approached first ovulation (P less than 0.05). Behavioural oestrus was not detected in 16/18 (89%) cows at first ovulation. Following first ovulation, the length of the subsequent cycle was short (mean = 9.7 +/- 0.5 days; range 8-15 days) in 14/18 (78%) cows and was characterized by the development and ovulation of a single dominant follicle. During oestrous cycles of normal length (mean = 20.6 +/- 0.5 days; range 18-23 days) one (N = 2), two (N = 7) or three (N = 8) dominant follicles were identified. The growth rate, maximum diameter or persistence of non-ovulatory dominant follicles before first ovulation or during oestrous cycles were not different (P greater than 0.05). These data show that, in beef suckler cows, follicular development and formation of a dominant follicle occur early after parturition and the incidence of ovulation of the first dominant follicle is low. The number of dominant follicles that develop before first ovulation is variable; first ovulation is rarely associated with oestrus and short cycles are common after first ovulation. It is concluded that prolonged anoestrus in post-partum beef suckler cows is due to lack of ovulation of a dominant follicle rather than delayed development of dominant follicles.  相似文献   

12.
This study was conducted to identify factors affecting PGF(2alpha) efficacy to synchronize estrus in water buffalo cows. After detection of a corpus luteum (CL) by rectal palpation, cows were treated (im) with dinoprost (12.5, 25 or 50mg) or D(+) cloprostenol (75, 150 or 300 microg) in a total of 66 treatments. Blood samples were collected 0, 24 and 48 h after treatment and ultrasound examinations and observations for estrus were performed daily to the day of ovulation or to 6 days after treatment. No PGF(2alpha) dose-response pattern was observed and overall rates of luteal regression (progesterone <1.0 ng/ml at 48 h), estrus, no detected behavioral estrus with ovulation occurring, and ovulation were 71.2, 36.4, 19.7 and 54.5%, respectively. To analyze plasma progesterone concentrations and ovarian dynamics, cows were divided in three groups according to their response to treatment. Cows that failed to have ovulations from a follicle after treatment (Group A, n = 30) had (P < 0.05) a lower plasma progesterone concentration (2.98 ng/ml) and smaller CL area (CLA; 187.3 mm(2)) before treatment as compared with cows that had an ovulation from a follicle (4.43 ng/ml and 223.7 mm(2), respectively; Groups B and C, n = 36). In cows that failed to ovulate, plasma progesterone concentration decreased in the first 24 h, but did not decline further and was >1.0 ng/ml 48 h after treatment. Moreover, no significant change in CLA after treatment was detected, indicating that treatment induced only partial luteolysis. In cows that ovulated, plasma progesterone concentration and CLA decreased continuously from treatment to ovulation (consistent with complete luteolysis). Threshold values of 2.8 ng/ml for plasma progesterone concentration and 189 mm(2) for CLA were identified as the best predictors of ovulation before treatment (83.3 and 80.6% sensitivity and 58.6 and 65.5% specificity, respectively, with positive and negative predictive values around 71%). When the origin of the ovulatory follicle was investigated, the interval from treatment to ovulation was shorter (91.9 versus 113.3 h; P < 0.05), and the ovulatory follicle had a slower growth rate (1.02 versus 1.55 mm per day; P < 0.005), a lesser increase in diameter from treatment to ovulation (4.7 versus 8.0 mm; P < 0.001), and a greater maximum diameter (13.2 versus 12.1 mm; P < 0.05) in cows that ovulated from the largest follicle present in the ovary before treatment (Group B, n = 27) compared with cows that ovulated from the second largest follicle present in the ovary before treatment (Group C, n = 9). In summary, the efficacy of PGF(2alpha) for causing luteolysis and synchronizing estrus and ovulation in buffalo cows was dependent upon plasma progesterone concentration, CL size and ovarian follicular status before treatment.  相似文献   

13.
Follicular growth and ovulation in response to FSH, progesterone and hCG were evaluated in postpartum beef cows. In Experiment 1, on Day 21 post partum, cows received an injection of either saline (control; n = 6), FSH (200 mg; n = 6), or a PRID (n = 5) for 10 d. Both FSH and PRID prolonged maintenance of a dominant follicle (15.5 +/- 1.16 and 14.4 +/- 1.29 d, respectively, vs 8.4 +/- 1.22 d in control; P < 0.01), and increased the maximum diameter of the dominant follicle (14.0 +/- 0.91 and 16.4 +/- 1.01 mm, respectively, vs 10.9 +/- 0.95 mm in control; P < 0.05). The PRID-maintained dominant follicle ovulated in 60% of cows, followed by normal estrous cycles (vs 0% in control; P = 0.01), whereas the dominant follicle ovulated in 33% of FSH-treated cows (P = 0.08). The PRID regimen shortened the interval to first ovulation preceding a normal cycle and continued cyclicity (44 +/- 4.1 vs 60 +/- 4.4 d in control; P = 0.02). In Experiment 2, on Day 21 post partum, cows received either saline (control), saline + PRID, or FSH + PRID (n = 16/group). Sixty hours after PRID withdrawal, cows received either saline or hCG (1,500 IU, n = 8/treatment). The FSH + PRID regimen increased the number of large (> 10 mm in diameter) follicles (3.6 +/- 0.43 vs 1.9 +/- 0.39 in control; P = 0.005). Both PRID and FSH + PRID prolonged maintenance of the largest follicle (11.0 +/- 0.82 and 11.2 +/- 0.91 d, respectively, vs 8.7 +/- 0.81 d in control; P < 0.05). The PRID-maintained dominant follicle ovulated in 50% of cows, followed by normal estrous cycles. The FSH + PRID-maintained largest follicle had become atretic at PRID withdrawal and was anovulatory. The FSH + PRID + hCG regimen increased the incidence of ovulation preceding a cycle of normal duration and continued cyclicity (100 vs 50% in PRID; P = 0.03), and reduced the interval to first ovulation preceding a cycle of normal duration and continued cyclicity (38 +/- 6.5 vs 58 +/- 6.3 d in control; P = 0.04). The area under the progesterone curve during the induced cycle was reduced after (PRID +/- FSH) + hCG than after PRID +/- FSH (P = 0.002). These results indicate that PRID alone or with FSH/hCG has the potential to modify the dominant follicle and initiate cyclicity in postpartum beef cows.  相似文献   

14.
《Theriogenology》2013,79(9):2095-2104
The objectives were to determine whether rates of conception, ovulation, presynchronization, or follicle and CL characteristics were altered after modifying the Double-Ovsynch (DO) protocol to include hCG compared with the DO protocol. Primiparous and multiparous lactating dairy cows (N = 183), and nulliparous dairy heifers (N = 51) were used. Cows were blocked by parity and heifers were stratified by age and breed before being randomly assigned to one of two treatments. All females received either 100 μg GnRH or 2000 IU hCG im, at initiation of the Pre-Ovsynch (PO) portion of the DO protocol (PO: GnRH/hCG, 7 days PGF and 3 days GnRH). After 7 days, females started the Breeding-Ovsynch portion of the DO protocol (Breeding-Ovsynch: GnRH, 7 days, PGF, 48 or 56 h and GnRH 16 hours timed artificial insemination with sex-sorted semen). Transrectal ultrasonography and blood samples were used to assess ovarian structures, ovulation, pregnancy diagnosis, and concentration of progesterone in plasma. Conception rates were similar in females treated with GnRH or hCG in cows (32.2 and 25.0%) and in heifers (30.8 and 36.0%). Ovulation rates in cows at the onset of PO were increased with hCG compared to GnRH (77.2 vs. 62.2%, P < 0.05). Concentrations of progesterone 7 days post-hCG or GnRH were greater in cows treated with hCG compared with GnRH (least significant mean ± SEM; 4.3 ± 0.3 and 3.0 ± 0.3 ng/mL, P < 0.01), but did not differ in heifers (4.5 ± 0.9 and 2.9 ± 0.9 ng/mL). More cows ovulated within 7 days post-hCG and a greater proportion of these cows tended to have failed luteal regression by Day 3 post-PGF compared with cows that had ovulated to GnRH (29.6 vs. 16.1%, P ≤ 0.10). The overall percentage of females which were synchronized to PO did not differ between GnRH- or hCG-treated cows (61.5% and 52.2%) and heifers (42.3% and 40.0%). In conclusion, no overall improvement in fertility was achieved by replacing the first injection of GnRH in the DO protocol with hCG.  相似文献   

15.
In an attempt to program ovarian function in the early post partum period, 52 lactating Holstein cows were injected with 25 mg prostaglandin F(2alpha) (PGF) and given a CIDR device containing 1.9 g progesterone for 15 d starting on Day 25 post partum. Ovarian follicles were measured by ultrasound on 0, 5, 10 and 15 d after insertion and on alternate days after CIDR removal until estrus. Not all cows were devoid of corpora lutea (CL) during the CIDR (11, 9 and 8 cows had a CL on Days 5, 10 and 15, respectively). There was a CL by day interaction (P<0.01) for the number of 10- to 15-mm follicles per cow; the average number of large follicles (>15 mm) was twice greater (0.75 vs 0.37) for those cows not having a CL during the period of CIDR exposure. The average size of the largest follicle increased to a maximum of 19.3 +/- 0.7 mm by 15 d after insertion in cows not having a CL. Plasma estradiol increased for 10 d after insertion, then decreased to the end of the CIDR period. After removal of the CIDR, 34 cows ovulated, eight cows developed ovarian follicular cysts, and eight cows did not ovulated by 14 d. Cows becoming cystic or not ovulating had a declining number of follicles during the CIDR compared with those cows ovulating (P<0.07). The diameter of the largest follicle in cystic cows was equivalent to noncystic cows until removal of the CIDR, but then it increased markedly. Interval to estrus was longer in cows having more 6- to 9-mm follicles on Day 15 (day of CIDR removal). These results demonstrate the existence and maintenance of a large dominant follicle after CIDR insertion and PGF injection which was influenced apparently by the presence of a CL. Furthermore, subsequent reproductive responses after the CIDR treatment was a function of follicular populations prior to withdrawal of the CIDR device. This system may be appropriate for the study of factors regulating follicular growth and fertility in domestic cattle.  相似文献   

16.
A method for timed artificial insemination (AI) that is used for beef cows, beef heifers, and dairy heifers employs progesterone-releasing inserts, such as the controlled internal drug release (CIDR; Zoetis, New York, NY, USA) that are left in place for 14 days. The 14-day CIDR treatment is a method of presynchronization that ensures that cattle are in the late luteal phase of the estrous cycle when PGF is administered before timed AI. The objective of this study was to test the effectiveness of the 14dCIDR-PGF program in postpartum dairy cows by comparing it with the traditional “Presynch-Ovsynch” (2xPGF-Ovsynch) program. The 14dCIDR-PGF cows (n = 132) were treated with a CIDR insert on Day 0 for 14 days. At 19 days after CIDR removal (Day 33), the cows were treated with a luteolytic dose of PGF, 56 hours later were treated with an ovulatory dose of GnRH (Day 35), and 16 hours later were inseminated. The 2xPGF-Ovsynch cows were treated with a luteolytic dose of PGF on Day 0 and again on Day 14. At 12 days after the second PGF treatment (Day 26), the cows were treated with GnRH. At 7 days after GnRH, the cows were treated with PGF (Day 33), then 56 hours later treated with GnRH (Day 35), and then 16 hours later were inseminated. There was no effect of treatment or treatment by parity interaction on pregnancies per AI (P/AI) when pregnancy diagnosis was performed on Day 32 (115/263; 43.7%) or Days 60 to 90 (99/263; 37.6%) after insemination. There was an effect of parity (P < 0.05) on P/AI because primiparous cows had lesser P/AI (35/98; 35.7%) than multiparous cows (80/165; 48.5%) on Day 32. Cows observed in estrus after the presynchronization step (within 5 days after CIDR removal or within 5 days after the second PGF treatment) had greater P/AI than those not observed in estrus (55/103; 53.4% vs. 60/160; 37.5%; observed vs. not observed; P < 0.01; d 32 pregnancy diagnosis). When progesterone data were examined in a subset of cows (n = 208), 55.3% of cows had a “prototypical” response to treatment (i.e., the cow had an estrous cycle that was synchronized by the presynchronization treatment and then the cow responded appropriately to the subsequent PGF and GnRH treatments before timed AI). Collectively, cows with a prototypical response to either treatment had 52.2% P/AI that was greater (P < 0.001) than the P/AI for cows that had a nonprototypical response (19%) (P/AI determined at 60–90 days of pregnancy). In conclusion, we did not detect a difference in P/AI when postpartum dairy cows were treated with 14dCIDR-PGF or 2xPGF2α-Ovsynch before timed AI. The primary limitation to the success of either program was the failure of the cow to respond appropriately to the sequence of treatments.  相似文献   

17.
The local relationship between the pregnant uterine horn and the CL during maternal recognition of pregnancy is well-documented. It continues beyond that time; pregnancies were maintained in lutectomized cows when CL were induced on the ovary ipsilateral, but not contralateral, to the uterine horn of pregnancy during Days 28-53. This study evaluated factors affecting maintenance of pregnancy by CL induced after Day 53, in lutectomized cows that had received exogenous progesterone from Day 29 to 15 days after induction of a CL. Twenty-four suckled beef cows were lutectomized on Day 29 of gestation; pregnancy was maintained with progesterone from two controlled internal drug releasing (CIDR) inserts, exchanged every 5 days. Beginning on Day 53, ovaries and viability of pregnancy were evaluated by ultrasonography every 5 days. When a follicle >or=10 mm in diameter was present ipsilateral to the fetus, each cow received 1,000 IU of hCG. Following induction of a CL (20 of 24), progesterone was reduced to a single CIDR for 5 days, then removed. Retention of pregnancy was confirmed by rectal palpation and calving. Cows with induced CL maintained pregnancy to term, including four with the CL contralateral to the fetus. Three cows failed to form normal CL by Day 98 and lost pregnancy after removal of exogenous progesterone. One cow that did not respond to hCG lost pregnancy during exogenous progesterone. In conclusion, CL induced after Day 53 maintained pregnancy to term, even when induced contralateral to the pregnant uterine horn.  相似文献   

18.
A greater understanding of the uterine artery’s (UtA) biology is essential to the increase in female reproductive abilities. The UtA flow velocity waveform, blood flow volume (BFV), pulsatility and resistance indices (PI and RI), blood flow velocities, dynamics of the dominant follicle (DF), and estradiol (E2) and progesterone (P4) levels in an induced ovulatory cycle were evaluated in Thai native cattle. Twenty cows were induced with synchronized ovulation through a P4-releasing device, from Day ?9 to Day ?4, concurrent with the administration of two doses of a gonadotropin-releasing hormone on Day ?9 and Day ?1, and two doses of prostaglandin F on Day ?4 and 8?h later. Day 0 was designated as the day of ovulation. The cows underwent Doppler sonographic determination and blood collection from Day ?4 to Day 0. The cows were classified in the non-ovulating (n?=?5) and ovulating groups (n?=?15). The ovulating cows presented higher BFV values, blood flow velocities, DF growth rates, and E2 levels; yet lower PI values and P4 concentrations, than those of the non-ovulating cows. The BFV values and the blood flow velocities were greater, but the RI and PI values were lower in the ovulatory side UtA than in the contraovulatory side UtA. The BFV values were positively correlated with blood flow velocities, DF growth rates and E2 concentrations in the ovulating cows; confirming the importance of UtA blood flow, follicular growth, and E2-vasodilation during preovulatory phase in the induced ovulatory cycle of Bos indicus beef cows.  相似文献   

19.
The resumption of ovarian activity after normal calvings was studied in 18 lactating Friesian cows. Since, in 17 cows, first post-partum ovulation occurred without overt oestrous behaviour being detected, the resultant cycles were called 'ovarian cycles'. The mean (+/- s.d.) length of the ovarian cycles was 21.0 +/- 8.7 days. The duration of cycles tended to be normal (18-24 days) or long (greater than or equal to 25 days) when the ovulatory dominant follicles were identified before Day 10 post partum; they were consistently short (9-13 days) when dominant follicles identified after Day 20 post partum ovulated. When such follicles were detected between Days 10 and 20 post partum, long, normal and short ovarian cycles were detected. The number of waves of follicular growth with associated dominant follicles observed during the ovarian cycles tended to be related to cycle length; short cycles had 1 dominant follicle, normal cycles predominantly 2, and long cycles mostly 3 dominant follicles. The mean (+/- s.d.) duration of 13 oestrous cycles studied was 23.1 +/- 2.1 days. Of these cycles, 7 had 3 and 6 had 2 dominant follicles. The oestrous cycles with 3 dominant follicles had a mean (+/- s.d.) duration of 24.0 +/- 1.2 days and the respective dominant non-ovulatory follicles reached maximum sizes on Days 8 and 18, respectively; oestrous cycles with 2 dominant follicles were 22.2 +/- 2.6 days in duration, and the dominant non-ovulatory follicle reached maximum size by Day 8. Ovarian follicular development during the first 45 days of pregnancy was characterized by the growth and regression of successive dominant follicles, each lasting 10-12 days. These results show that the first ovarian cycle was predominantly short when the ovulatory dominant follicle was first detected after Day 20 post partum.  相似文献   

20.
To investigate the influence of low plasma progesterone (P4) concentrations on luteal and ovarian follicular development as well as endometrial gene expression in the concomitant and subsequent estrous cycle, 20 lactating dairy (Holstein Friesian and Brown Swiss x Holstein Friesian) cows received either a single treatment with 25 mg prostaglandin F (PGF) on Day 4 Hour 12 (PG1; n = 8), or two treatments (25 mg PGF each) on Day 4 Hours 0 and 12 (PG2; n = 12) of the estrous cycle (Day 1, Hour 0 = ovulation). In four cows, ovulation occurred between 4 and 6 d after the second PGF treatment; these cows and one lame cow were excluded. In the 15 remaining cows with physiological interovulatory intervals (18 to 24 d), P4, luteal size (LS) and blood flow (LBF), as well as follicular size (FS) and blood flow (FBF), were determined daily until Day 4, immediately prior to (0 h) and 12 h after each PGF treatment, and then every 2 d, from Day 5 to 8 d after the subsequent ovulation. Because P4 did not differ (P > 0.05) between PG1 and PG2, cows were regrouped according to their mean P4 concentration from Days 7 to 15, either P4 <2 ng/mL (P4L; n = 7) or P4 >2 ng/mL (P4H; n = 8). In the treatment cycle, LS was smaller in P4L than P4H on Days 13 (P = 0.01) and 15 (P = 0.03), and LBF was lower in P4L than P4H on Day 15 (P = 0.02). The dominant follicle of the first follicular wave was larger in P4L than P4H on Days 13 (P = 0.03), 15 (P = 0.03), and 17 (P = 0.01). In the subsequent cycle, there were no significant differences between P4L and P4H for P4, FS, LS, and LBF; however, FBF was lower (P = 0.01) in P4L than P4H on Day 7. In Group P4L, endometrial expressions of estrogen receptor α and oxytocin receptor were lower (P = 0.05 and P = 0.03, respectively) at the estrus that preceded treatment compared to the post-treatment estrus. In summary, low P4 during diestrus was associated with smaller LS, reduced LBF, and larger FS in the treatment cycle, but not in the subsequent cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号