首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Many solitary ground-nesting wasps in the families Pompilidae and Sphecidae excavate nests after capturing prey for provisions. These wasps generally cache their immobilized prey temporarily during nest excavation, frequently by suspending the prey in a plant (aerial caching). Here I test the hypothesis that aerial caching by Ammophila spp. wasps (Sphecidae) functions to reduce prey theft by generalist predators, Formica spp. ants. Foraging ants removed baits placed on the ground more rapidly than baits suspended in plants; mean half-lives for ground and aerial baits were 14.5 and 145.7 min, respectively (mean values for experiments 1–3). Ant foraging activity decreased during the midday. Ant interference with nesting activities of Ammophila spp. also decreased during the midday, paralleling observed fluctuations in ant foraging activity.  相似文献   

5.
6.
7.
Glandular chemical defence relying on the action of salicylaldehyde is characteristic for Chrysomela leaf beetle larvae. The salicylaldehyde precursor salicin, sequestered from salicaceous host plants, is deglucosylated and the aglycon further oxidized by a salicyl alcohol oxidase (SAO) to the respective aldehyde. SAOs, key enzymes in salicin-based glandular chemical defence, were previously identified and shown to be of a single evolutionary origin in Chrysomela species. We here identified and characterized SAO of Phratora vitellinae, the only species outside the genus Chrysomela that produce salicylaldehyde as a defensive compound. Although Chrysomela and Phratora are not closest relatives, their SAOs share glucose-methanol-choline oxidoreductase (GMC) affiliation, a specific GMCi subfamily ancestor, glandular tissue-specific expression and almost identical gene architectures. Together, this strongly supports a single origin of SAOs of both Chrysomela and Phratora. Closely related species of Chrysomela and P. vitellinae use iridoids as defensive compounds, which are like salicylaldehyde synthesized by the consecutive action of glucosidase and oxidase. However, we elucidated SAO-like sequences but no SAO proteins in the glandular secretion of iridoid producers. These findings support a different evolutionary history of SAO, related genes and other oxidases involved in chemical defence in the glandular system of salicylaldehyde and iridoid-producing leaf beetle larvae.  相似文献   

8.
In the western Baltic Sea, the highly competitive blue mussel Mytilus edulis tends to monopolize shallow water hard substrata. In many habitats, mussel dominance is mainly controlled by the generalist predator Carcinus maenas. These predator-prey interactions seem to be affected by mussel size (relative to crab size) and mussel epibionts.There is a clear relationship between prey size and predator size as suggested by the optimal foraging theory: Each crab size class preferentially preys on a certain mussel size class. Preferred prey size increases with crab size.Epibionts on Mytilus, however, influence this simple pattern of feeding preferences by crabs. When offered similarly sized mussels, crabs prefer Balanus-fouled mussels over clean mussels. There is, however, a hierarchy of factors: the influence of attractive epibiotic barnacles is weaker than the factor ‘mussel size’. Testing small mussels against large mussels, presence or absence of epibiotic barnacles does not significantly alter preferences caused by mussel size. Balanus enhanced crab predation on mussels in two ways: Additional food gain and, probably more important, improvement in handling of the prey. The latter effect is illustrated by the fact that artificial barnacle mimics increased crab predation on mussels to the same extent as do live barnacles.We conclude that crab predation preferences follows the optimal foraging model when prey belong to different size classes, whereas within size classes crab preferences is controlled by epibionts.  相似文献   

9.
The lack of direct empirical evidence of predator evolution in response to prey adaptation is a fundamental weakness of the arms race analogy of predator-prey coevolution. I examined the interaction between the predatory busyconine whelk Sinistrofulgur sinistrum and its bivalve prey Mercenaria mercenaria to evaluate whether reciprocal adaptation was likely in this predator-prey system. Thick-lipped whelks use their shell lip to chip open the shell of their prey, often resulting in breakage to their own shell. Thus, hard-shelled prey, such as Mercenaria, may be considered dangerous because they are able to inflict damage to the predator as a consequence of the interaction. The strength of interaction between whelks and their bivalve prey was viewed by regressing predator performance (the incidence of shell breakage in encounters with prey) on prey phenotype (a function of size). Interaction with Mercenaria of varying sizes has strong and predictable consequences (r2=0.946; p=0.028) for Sinistrofulgur. Predators that select large, thick bivalve prey increase the likelihood that their shell lip will be broken in the process of attempting to open their prey. Ecological consequences of feeding-induced breakage may include reduced growth rate, reproductive success, and survivorship. These results suggest that natural selection should favor predator phenotypes that reduce feeding-induced breakage when interactions with damage-inducing prey occur.  相似文献   

10.
11.
12.
The traps of many carnivorous plants are red in colour. This has been widely hypothesized to serve a prey attraction function; colour has also been hypothesized to function as camouflage, preventing prey avoidance. We tested these two hypotheses in situ for the carnivorous plant Drosera rotundifolia. We conducted three separate studies: (i) prey attraction to artificial traps to isolate the influence of colour; (ii) prey attraction to artificial traps on artificial backgrounds to control the degree of contrast and (iii) observation of prey capture by D. rotundifolia to determine the effects of colour on prey capture. Prey were not attracted to green traps and were deterred from red traps. There was no evidence that camouflaged traps caught more prey. For D. rotundifolia, there was a relationship between trap colour and prey capture. However, trap colour may be confounded with other leaf traits. Thus, we conclude that for D. rotundifolia, red trap colour does not serve a prey attraction or camouflage function.  相似文献   

13.
14.
We determined the effects of number of prey and the area over which they were distributed on the number of prey eaten and the production efficiency ofMetasyrphus corollae (F.) (formelySyrphus corollae F.) larvae. We hypothesized that, for a given number of prey offered per day, increased plant size would reduce foraging efficiency and production efficiency. Also, increased prey number was expected to increase production efficiency. Individual larvae were offered 10, 20, 40 or 60 pea aphids each day on plants with 7.5, 35 or 73 cm2 surface area. When more aphids were offered, larvae ofM. corollae killed more of them but left larger aphid carcasses. Foraging efficiency (percentage of available aphids eaten) declined as aphid abundance and plant size increased. Foraging costs were not decreased by increasing prey density and therefore production efficiency was not increased.
Résumé Les effets du nombre de proies et de la surface sur laquelle elles ont été distribuées, sur le nombre de proies mangées et sur le rendement de la production des larves deMetasyrphus corollae (F.) ont été déterminés. Nous avons supposé que, pour un nombre donné de proies offertes par jour, le rendement de la quête alimentaire et de la production diminueraient avec l'augmentation de la taille de la plante. De même, on supposait que le nombre croissant de proies augmentait le rendement de la production. On offrait chaque jour à des larves individuelles 10, 20, 40 ou 50 aphides du pois, sur des plantes dont la surface était 7,5, 35 ou 73 cm2. Quand on offrait plus d'aphides, les larves deM. corollae les tuaient, mais elles laissaient alors de plus gros cadavres. Le rendement de la quête alimentaire (pourcentage d'aphides disponibles mangés) diminuait lorsque l'abondance des aphides et la taille de la plante augmentaient. Les couts de la quête alimentaire n'étaient pas réduits par l'augmentation du nombre de proies et ainsi le rendement de la production n'était pas augmenté.
  相似文献   

15.
16.
17.
18.
19.
Plaice (Pleuronectes platessa) nursery grounds on the Swedish west coast have been subject to increasing cover of annual green macroalgae during recent years, with growth of algae starting at the time of plaice settlement in April to May. A laboratory experiment was performed to investigate how the vulnerability to predation of metamorphosing plaice was affected by the presence of filamentous algae. Predation by shrimps (Crangon crangon) on settling plaice larvae was higher on sand than among algae, whereas predation by crabs (Carcinus maenas) was unaffected by habitat type, suggesting a lower overall mortality of plaice in the vegetated habitat. When predators and prey were presented with a combination of the two habitats, predation by shrimps was as high as that in the sand treatment alone, whereas predation by crabs was lower than that in the two treatments with one habitat. Based on these results, an additional experiment was performed, investigating the functional response of shrimps to six densities of juvenile plaice in a sand habitat with alternative prey present. The proportional mortality of juvenile plaice (12-16 mm total length (TL)) was density-dependent and was best described by a type III (sigmoid) functional response of the predatory shrimps. The results suggested that the combined predation pressure from shrimps and crabs was lower among algae than on sand, but settling plaice and predatory shrimps chose the sand habitat. Plaice densities in the sigmoid part of the obtained functional response curve represented normal to high field densities of plaice on the Swedish west coast, suggesting that shrimp predation could have a stabilising effect on plaice recruitment. The formation of macroalgae mats could therefore lead to a concentration of plaice juveniles in the remaining sand habitat and increased mortality through density-dependent predation by shrimps.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号