首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells of the E3-24 mutant of the strain D273-10B of Saccharomyces cerevisiae, grown in a fermentable substrate not showing catabolite repression of respiration (2% galactose), are able to respire, in spite of their ubiquinone deficiency in mitochondrial membranes. Mitochondria isolated from these mutant cells oxidize exogenous NADH through a pathway insensitive to antimycin A but inhibited by cyanide. Addition of methanolic solutions of ubiquinone homologs stimulates the oxidation rate and restores antimycin A sensitivity in both isolated mitochondria and whole cells. Mersalyl preincubation of isolated mitochondria inhibits both NADH oxidation and NADH-cytochrome c oxido-reductase activity (assayed in the presence of cyanide) with the same pattern. Electrons resulting from the oxidation of exogenous NADH reduce both cytochrome b5 and endogenous cytochrome c. The increase in ionic strength stimulates NADH oxidation, which is also coupled to the ATP synthesis with an ATP/O ratio similar to that obtained with ascorbate plus N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD) as substrate. The effect of cyanide on these activities and on NADH-induced endogenous cytochrome c reduction is also comparable. These results support the existence in vivo and in isolated mitochondria of a energy-conserving pathway for the oxidation of cytoplasmatic NADH not related to the dehydrogenases of the inner membrane, the ubiquinone, and the b-c1 complex, but involving a cytochrome c shuttle between the NADH-cytochrome c reductase of the outer membrane and cytochrome oxidase in the inner membrane.  相似文献   

2.
Addition of exogenous NADH to rotenone- and antimycin A-treated mitochondria, in 125 mM KCl, results in rates of oxygen uptake of 0.5-1 and 10-12 nanoatoms of oxygen X mg protein-1 X min-1 in the absence and presence of cytochrome c, respectively. During oxidation of exogenous NADH there is a fast and complete reduction of cytochrome b5 while endogenous or added exogenous cytochrome c become 10-15% and 100% reduced, respectively. The reoxidation of cytochrome b5, after exhaustion of NADH, precedes that of cytochrome c. NADH oxidation is blocked by mersalyl, an inhibitor of NADH-cytochrome b5 reductase. These observations support the view of an electron transfer from the outer to the inner membrane of intact mitochondria. Both the rate of exogenous NADH oxidation and the steady state level of cytochrome c reduction increase with the increase of ionic strength, while the rate of succinate oxidation undergoes a parallel depression. These observations suggest that the functions of cytochrome c as an electron carrier in the inner membrane and as an electron shuttle in the intermembrane space are alternative. It is concluded that aerobic oxidation of exogenous NADH involves the following pathway: NADH leads to NADH-cytochrome b5 reductase leads to cytochrome b5 leads to intermembrane cytochrome c leads to cytochrome oxidase leads to oxygen. It is suggested that the communication between the outer and inner membranes mediated by cytochrome c may affect the oxidation-reduction level of cytosolic NADH and the related oxidation-reduction reactions.  相似文献   

3.
Preparations of rat-liver mitochondria catalyze the oxidation of exogenous NADH by added cytochrome c or ferricyanide by a reaction that is insensitive to the respiratory chain inhibitors, antimycin A, amytal, and rotenone, and is not coupled to phosphorylation. Experiments with tritiated NADH are described which demonstrate that this "external" pathway of NADH oxidation resembles stereochemically the NADH-cytochrome c reductase system of liver microsomes, and differs from the respiratory chain-linked NADH dehydrogenase. Enzyme distributation data are presented which substantiate the conclusion that microsomal contamination cannot account for the rotenone-insensitive NADH-cytochrome c reductase activity observed with the mitochondria. A procedure is developed, based on swelling and shrinking of the mitochondria followed by sonication and density gradient centrifugation, which permits the separation of two particulate subfractions, one containing the bulk of the respiratory chain components, and the other the bulk of the rotenone-insensitive NADH-cytochrome c reductase system. Morphological evidence supports the conclusion that the former subfraction consists of mitochondria devoid of outer membrane, and that the latter represents derivatives of the outer membrane. The data indicate that the electron-transport system associated with the mitochondrial outer membrane involves catalytic components similar to, or identical with, the microsomal NADH-cytochrome b5 reductase and cytochrome b5.  相似文献   

4.
Exogenous NADH oxidation by cauliflower (Brassica oleracea L.) bud mitochondria was sensitive to antimycin A and gave ADP/O ratios of 1.4 to 1.9. In intact mitochondria, NADH-cytochrome c reductase activity was only slightly inhibited by antimycin A. The antimycin-insensitive activity was associated with the outer membrane. Malate oxidation was sensitive to both rotenone and antimycin A and gave ADP/O values of 2.4 to 2.9. However in the presence of added NAD+, malate oxidation displayed similar properties to exogenous NADH oxidation. In both the presence and absence of added NAD+, malate oxidation was dependent on inorganic phosphate and inhibited by 2-n-butyl malonate.  相似文献   

5.
Two subcellular fraction, P-1 and P-2, were isolated by differential centrifugation from 0.25 M sucrose muscle homogenates of the parasitic roundworm, Ascaris lumbricoides suum. Morphological studies indicated that P-1 fraction consisted of intact mitochondria, whereas P-2 fraction consisted almost exclusively of vesicular components. The difference spectrum of Ascaris microsomes showed a characteristic b-type cytochrome spectrum with three distinct absorption peaks at 560, 525, and 424 nm. However, the alpha-peak at 560 nm was asymmetric with a shoulder at 555 nm. This microsomal b-type cytochrome was reduced by NADH, which was inhibited by rotenone and HgCl2. The reduced b-type cytochrome was easily reoxidized by shaking. NADH-oxidase activity observed in Ascaris microsomes was inhibited by rotenone, but not by KCN, NaN3, and antimycin A. On the other hand, NADH-cytochrome c and NADH-neotetrazolium (NT) reductase activities in Ascaris microsomes were not inhibited by antimycin A and rotenone, but were inhibited by HgCl2. Further observations indicated that neither HgCl2 nor rotenone inhibited Ascaris microsomal NADH-ferricyanide (FC) reductase activity, but rabbit antibody prepared against the purified NADH-FC reductase inhibited the NADH-cytochrome c reductase activity, the reduction of b-type cytochrome and the NADH-oxidase activity, as well as microsomal NADH-FC reductase activity.  相似文献   

6.
15 min cold exposure of rats adapted to cold results in switching on a pathway of the fast oxidation of extramitochondrial NADH in the isolated liver mitochondria. This pathway is sensitive to mersalyl and cyanide, resistant to amytal and antimycin A, and can be stimulated by dinitrophenol. A portion of the endogenous cytochrome c pool can easily be removed by washing mitochondria of the cold-exposed rats. A scheme is discussed, postulating desorption of the inner membrane-bound cytochrome c into intermembrane space of mitochondria, resulting in formation of a link between the non-phosphorylating NADH-cytochrome c reductase in the outer mitochondrial membrane and cytochrome c oxidase in the inner membrane. It is suggested that such an oxidative pathway is involved in the urgent heat production in liver in response to the cold treatment.  相似文献   

7.
The possibility of direct oxidation of external NADH in rat liver mitochondria and of the inner membrane potential generation in this process is still not clear. In the present work, the energy-dependent swelling of mitochondria in the medium containing valinomycin and potassium acetate was measured as one of the main criteria of the proton-motive force generation by complex III, complex IV, and both complexes III and IV of the respiratory chain. Mitochondria swelling induced by external NADH oxidation was compared with that induced by succinate or ferrocyanide oxidation, or by electron transport from succinate to ferricyanide. Mitochondria swelling, nearly equal to that promoted by ferrocyanide oxidation, was observed under external NADH oxidation, but only after the outer mitochondrial membrane was ruptured as a result of the swelling-contraction cycle, caused by succinate oxidation and its subsequent inhibition. In this case, significantly accelerated intermembrane electron transport and well-detected inner membrane potential generation, in addition to mitochondria swelling, were also observed. Presented results suggest that exogenous NADH and cytochrome c do not support the inner membrane potential generation in intact rat liver mitochondria, because the external NADH-cytochrome c reductase system, oriented in the outer mitochondrial membrane toward the cytoplasm, is inaccessible for endogenous cytochrome c reduction; as well, the inner membrane cytochrome c oxidase is inaccessible for exogenous cytochrome c oxidation.  相似文献   

8.
The effect of a series of respiratory inhibitors on the oxidation of NADH in state 4 and state 3 conditions was studied with corn shoot mitochondria. Comparisons were made using malate and succinate as substrates. The inhibitors, rotenone, amytal, antimycin A and cyanide, inhibited oxidation of NADH in state 3 but rotenone and amytal did not inhibit oxidation in state 4. The inhibition by antimycin A was partially overcome by the presence of cytochrome c. The results indicate the presence of alternative pathways available for NADH oxidation depending on the metabolic condition of the mitochondria. Under state 4 conditions, NADH oxidation bypasses the amytal and rotenone sensitive sites but under state 3 conditions a component of the NADH respiration appears to be oxidized by an internal pathway which is sensitive to these inhibitors. Still a third pathway for NADH oxidation is dependent on the addition of cytochrome c and is insensitive to antimycin A. Succinate oxidation was sensitive to cyanide and antimycin A under both state 4 and state 3 conditions as well as amytal and rotenone under state 3 conditions but was not inhibited by amytal and rotenone under state 4 conditions. Malate oxidation was inhibited by cyanide, rotenone and amytal under both state 4 and state 3 conditions. Antimycin A inhibited state 3 but did not appreciably alter state 4 rates of malate oxidation. With all substrates tested inhibition by antimycin A was greatly facilitated by preswelling the mitochondria for 10 min. This was interpreted to indicate that swelling increases the accessibility of antimycin A to the site of inhibition.  相似文献   

9.
Oxidation of exogenous NADH by isolated rat liver mitochondria is generally accepted to be mediated by endogenous cytochrome c which shuttles electrons from the outer to the inner mitochondrial membrane. More recently it has been suggested that, in the presence of added cytochrome c, NADH oxidation is carried out exclusively by the cytochrome oxidase of broken or damaged mitochondria. Here we show that electrons can be transferred in and out of intact mitochondria. It is proposed that at the contact sites between the inner and the outer membrane, a "bi-trans-membrane" electron transport chain is present. The pathway, consisting of Complex III, NADH-b5 reductase, exogenous cytochrome c and cytochrome oxidase, can channel electrons from the external face of the outer membrane to the matrix face of the inner membrane and viceversa. The activity of the pathway is strictly dependent on both the activity of the respiratory chain and mitochondrion integrity.  相似文献   

10.
The effect of antimycin, myxothiazol, 2-heptyl-4-hydroxyquinoline-N-oxide, stigmatellin and cyanide on respiration, ATP synthesis, cytochrome c reductase, and membrane potential in mitochondria isolated from dark-grown Euglena cells was determined. With L-lactate as substrate, ATP synthesis was partially inhibited by antimycin, but the other four inhibitors completely abolished the process. Cyanide also inhibited the antimycin-resistant ATP synthesis. Membrane potential was collapsed (<60 mV) by cyanide and stigmatellin. However, in the presence of antimycin, a H(+)60 mV) that sufficed to drive ATP synthesis remained. Cytochrome c reductase, with L-lactate as donor, was diminished by antimycin and myxothiazol. Cytochrome bc(1) complex activity was fully inhibited by antimycin, but it was resistant to myxothiazol. Stigmatellin inhibited both L-lactate-dependent cytochrome c reductase and cytochrome bc(1) complex activities. Respiration was partially inhibited by the five inhibitors. The cyanide-resistant respiration was strongly inhibited by diphenylamine, n-propyl-gallate, salicylhydroxamic acid and disulfiram. Based on these results, a model of the respiratory chain of Euglena mitochondria is proposed, in which a quinol-cytochrome c oxidoreductase resistant to antimycin, and a quinol oxidase resistant to antimycin and cyanide are included.  相似文献   

11.
An exo-NADH oxidase system [NADH oxidase system (external)], effecting intact-mitochondrial oxidation of added NADH, was studied in pigeon heart mitochondria. Breast muscle mitochondria showed an equal specific activity of the system. The exo-NADH oxidase activity (200 micron mol of NADH/min per g of protein) equalled two-thirds of the State-3 respiratory activity with malate + pyruvate or one-seventh of the total NADH oxidase activity of heart mitochondria. The activity was not caused by use of proteinase in the preparation procedure and all measured parameters were very reproducible from preparation to preparation. The activity is therefore most likely not due to preparation artefacts. The exo-NADH oxidase system is present in all mitochondria in the preparation and is not confined to a subpopulation. The system reduced all cytochrome anaerobically and direct interaction with all cytochrome oxidase was demonstrated by interdependent cyanide inhibition. The exo-NADH oxidase system seems to be located at the outer surface of the mitochondrial inner membrane because, for instance, only this system was rapidly inhibited by rotenone, and ferricyanide could act as acceptor in the rotenone-inhibited system (reductase activity = 20 times oxidase activity). In the presence of antimycin, added NADH reduced only a part of the b-cytochromes. Freezing and thawing the mitochondria, one of the methods used for making them permeable to NADH, destroyed this functional compartmentation. The characteristics of the exo-NADH oxidase system and the malate-aspartate shuttle are compared and the evidence for the shuttle's function in heart in vivo is re-evaluated. It is proposed that oxidation of cytoplasmic NADH in red muscles primarily is effected by the exo-NADH oxidase system.  相似文献   

12.
It was found that the 1.4-naphthoquinone derivative AK-135 (2-methyl-3-piperidine-methyl-1.4-naphthoquinone hydrochloride) possesses a marked acceptor capacity during succinate and glutamate oxidation by rat liver and rabbit heart mitochondria. AK-135 fully restores the rate of glutamate (but not succinate) oxidation by liver and heart mitochondria catalyzed by rotenone, antimycin A and cyanide. In non-phosphorylating preparations of liver and heart mitochondria, AK-135 eliminates the inhibition of respiration on exogenous NADH induced by the same electron transport inhibitors. In liver mitochondria, the stimulation of succinate oxidation is due to a reverse electron transfer, whereas in the heart it proceeds via the rotenone-insensitive pathway. The experimental results suggest that in the liver and heart AK-135 accepts electrons from NADH-dehydrogenase oxidizing endogenous NADH. Besides, in the liver this compound is also capable of accepting electrons from NADH-cytochrome b5 reductase.  相似文献   

13.
The participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in the NADH-semidehydroascorbate (SDA) reductase activity of rat liver was studied. NADH-SDA reductase activity was strongly inhibited by antibodies against OM cytochrome b and NADH-cytochrome b5 reductase, whereas no inhibition was caused by anti-cytochrome b5 antibody. NADH-SDA reductase exhibited the same distribution pattern as OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase activity among various subcellular fractions and submitochondrial fractions. Both activities were localized in outer mitochondrial membrane. These observations suggest that OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase system participates in the NADH-SDA reductase activity of rat liver.  相似文献   

14.
The yeast C. parapsilosis CBS7157 is strictly dependent on oxidative metabolism for growth since it lacks a fermentative pathway. It is nevertheless able to grow on high glucose concentrations and also on a glycerol medium supplemented with antimycin A or drugs acting at the level of mitochondrial protein synthesis. Besides its normal respiratory chain C. parapsilosis develops a second electron transfer chain antimycin A-insensitive which allows the oxidation of cytoplasmic NAD(P)H resulting from glycolytic and hexose monophosphate pathways functioning through a route different from the NADH-coenzyme Q oxidoreductase described in S. cerevisiae or from the alternative pathways described in numerous plants and microorganisms. The second respiratory chain of C. parapsilosis involves 2 dehydrogenases specific for NADH and NADPH respectively, which are amytal and mersalyl sensitive and located on the outer face of the inner membrane. Since this antimycin A-insensitive pathway is fully inhibited by myxothiazol, it was hypothesized that electrons are transferred to a quinone pool that is different from the classical coenzyme Q-cytochrome b cycle. Two inhibitory sites were evidenced with myxothiazol, one related to the classical pathway, the other to the second pathway and thus, the second quinone pool could bind to a Q-binding protein at a specific site. Elimination of this second pool leads to a fully antimycin A-sensitive NADH oxidation, whereas its reincorporation in mitochondria allows recovery of an antimycin A-insensitive, myxothiazol sensitive NADH oxidation. The third step in this second respiratory chain involves a specific pool of cytochrome c which can deliver electrons either to a third phosphorylation site or to an alternative oxidase, cytochrome 590. This cytochrome is inhibited by high cyanide concentrations and salicylhydroxamates.  相似文献   

15.
The outer membrane of turnip (Brassica rapa L.) mitochondria was isolated by incubating the mitochondria with a dilute digitonin solution and differential centrifuging. The outer membrane fraction was not contaminated by inner membrane enzymes and lacked an NADPH-cytochrome c reductase. However it possessed very active NADH-cytochrome c, dichloroindophenol and ferricyanide reductases which were insensitive to antimycin A, Amytal and low (less than 10 μm) concentrations of Dicumarol. p-Chloromercuribenzoate (ClHgBzO?) and high concentrations (greater than 10 μm) of Dicumarol inhibited the reductases, ClHgBzO? almost completely. Preincubation of the outer membrane with NADH protected it from ClHgBzO? inhibition. An acid phosphatase and an NADPH-ferricyanide reductase were also detected, but the latter was only loosely bound to the membrane. The NADH dehydrogenase of the outer membrane was insensitive to ethylene glycol-bis(β-aminoethyl ether)N,N′-tetraacetate (1 mm) and was not stimulated by CaCl2 (0.5 mm), thus differing from the external NADH oxidase of the inner membrane (Coleman, J. O. D., and Palmer, J. M. (1971) FEBS Lett., 17, 203–208). Respiratory-linked oxidation of exogenous NADH by intact mitochondria showed a similar pattern of inhibition by ClHgBzO? as did the outer membrane, but was inhibited strongly by low concentrations of Dicumarol (5 μm inhibited by 70%).  相似文献   

16.
In a study of the chronic effects of CCl4 on the respiratory activities of rat liver mitochondria, the content of cytochrome c oxidase increased from 0.077 +/- 0.010 (nmol/mg protein) for normal rats to 0.101 +/- 0.009, and its specific activity increased from Vmax = 345 +/- 24 (e-/s/cytochrome aa3) to 431 +/- 19 in mitochondria of CCl4 treated rats. There was a slight increase in Km for cytochrome c from 5.63 +/- 0.08 microM to 7.79 +/- 0.80. These results would strongly suggest that an appreciable decrease in the steady state concentration of ATP in hepatic cells of CCl4 treated rats brought about a compensatory increase in the overall activity of cytochrome c oxidase. However, when the rate of oxygen uptake by mitochondria was measured in the presence of rotenone and tetramethyl-p-phenylene-diamine with NADH as substrate, the specific activity in CCl4 treated rats was lower than that of normal rats (Vmax = 345 +/- 31 (e-/s/cytochrome aa3), as compared to Vmax = 408 +/- 21) in spite of the increased activity of cytochrome c oxidase. This phenomenon was ascribed to a decrease in the activity of NADH cytochrome b5 reductase in the mitochondrial outer membrane due to CCl4 treatment.  相似文献   

17.
The observation that high cellular concentrations of NADH were associated with low adenylate cyclase activity led to a search for the mechanism of the effect. Since cyclase is in the plasma membrane, we considered the membrane might have a site for NADH action, and that NADH might be oxidized at that site. A test for NADH oxidase showed very low activity, which could be increased by adding growth factors. The plasma membrane oxidase was not inhibited by inhibitors of mitochondrial NADH oxidase such as cyanide, rotenone or antimycin. Stimulation of the plasma membrane oxidase by iso-proterenol or triiodothyronine was different from lack of stimulation in endoplasmic reticulum. After 25 years of research, three components of a trans membrane NADH oxidase have been discovered. Flavoprotein NADH coenzyme Q reductases (NADH cytochrome b reductase) on the inside, coenzyme Q in the middle, and a coenzyme Q oxidase on the outside as a terminal oxidase. The external oxidase segment is a copper protein with unique properties in timekeeping, protein disulfide isomerase and endogenous NADH oxidase activity, which affords a mechanism for control of cell growth by the overall NADH oxidase and the remarkable inhibition of oxidase activity and growth of cancer cells by a wide range of anti-tumor drugs. A second trans plasma membrane electron transport system has been found in voltage dependent anion channel (VDAC), which has NADH ferricyanide reductase activity. This activity must be considered in relation to ferricyanide stimulation of growth and increased VDAC antibodies in patients with autism.  相似文献   

18.
D S Beattie  L Clejan 《Biochemistry》1986,25(6):1395-1402
Mitochondria isolated from coenzyme Q deficient yeast cells had no detectable NADH:cytochrome c reductase or succinate:cytochrome c reductase activity but contained normal amounts of cytochromes b and c1 by spectral analysis. Addition of the exogenous coenzyme Q derivatives including Q2, Q6, and the decyl analogue (DB) restored the rate of antimycin- and myxothiazole-sensitive cytochrome c reductase with both substrates to that observed with reduced DBH2. Similarly, addition of these coenzyme Q analogues increased 2-3-fold the rate of cytochrome c reduction in mitochondria from wild-type cells, suggesting that the pool of coenzyme Q in the membrane is limiting for electron transport in the respiratory chain. Preincubation of mitochondria from the Q-deficient yeast cells with DBH2 at 25 degrees C restored electrogenic proton ejection, resulting in a H+/2e- ratio of 3.35 as compared to a ratio of 3.22 observed in mitochondria from the wild-type cell. Addition of succinate and either coenzyme Q6 or DB to mitochondria from the Q-deficient yeast cells resulted in the initial reduction of cytochrome b followed by a slow reduction of cytochrome c1 with a reoxidation of cytochrome b. The subsequent addition of antimycin resulted in the oxidant-induced extrareduction of cytochrome b and concomitant oxidation of cytochrome c1 without the "red" shift observed in the wild-type mitochondria. Similarly, addition of antimycin to dithionite-reduced mitochondria from the mutant cells did not result in a red shift in the absorption maximum of cytochrome b as was observed in the wild-type mitochondria in the presence or absence of exogenous coenzyme Q analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
15 min cold exposure of rats adapted to cold results in switching on a pathway of the fast oxidation of extramitochondrial NADH in the isolated liver mitochondria. This pathway is sensitive to mersalyl and cyanide, resistant to amytal and antimycin A, and can be stimulated by dinitrophenol. A portion of the endogenous cytochrome c pool can easily be removed by washing mitochondria of the cold-exposed rats.A scheme is discussed, postulating desorption of the inner membrane-bound cytochrome c into intermembrane space of mitochondria, resulting in formation of a link between the non-phosophorylating NADH-cytochrome c reductase in the outer mitochondrial membrane and cytochrome c oxidase in the inner membrane. It is suggested that such an oxidative pathway is involved in the urgent heat production in liver in response to the cold treatment.  相似文献   

20.
A possibility of exogenous NADH oxidation via the external pathway has been shown on homogenates and isolated liver cells of the lamprey Lampetra fluviatilis in the presence of rotenone and antimycin A. The homogenates were incubated in isotonic and hypotonic sucrose media, while cells, in isotonic salt medium. At incubating the tissue preparations in isotonic media, digitonin was used to enhance membrane permeability to NADH and cytochrome c. In homogenates, the maximal rate of NADH oxidation via the external pathway in the presence of cytochrome c and digitonin was 5.3 nmol O2/min/10 mg wet weight. This value in the cells amounted to 12.6, while without addition of exogenous NADH and cytochrome c, to 11.0 nmol O2/min/10 million cells. Cyanide inhibited completely the NADH oxidation via the external pathway both in homogenates and in cells. The intact lamprey hepatocytes, unlike homogenates, are suggested to contain sufficient concentrations of cytochrome c and extramitochondrial NADH to provide maximal NADH oxidation rate in mitochondria through external pathway. This allows thinking that potential possibilities of NADH oxidation via the external pathway in Cyclostomata and mammals are qualitatively and quantitatively close.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号