首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Living Schistosoma mansoni schistosomula incubated with normal chicken, guinea pig, human, and monkey sera were killed after 4 hr contact at 37 degrees C. The following data indicate that this action is dependent on the activation of the alternative complement pathway (AP): a) the inactivity of RB, RD, and zymosan-treated serum against schistosomula; b) the partial activity of RD restored in FD; c) the full effect of the C4-deficient guinea pig, C2-deficient human, and the agammaglobulinemic human sera; d) the consumption of both the AP and FB after the incubation of NHS with schistosomula; e) the detection of C3d breakdown product during the contact of the C2-deficient human serum with these young parasites. Killing by serum was decreased as the immature schistosomes developed and was completely absent against 4-day-old lung schistosomula (LS). In other experiments, it was demonstrated that schistosomula, in the presence of IgG, were able to initiate complement activation also through the classical pathway (CP). However, the CP does not appear to play a role in the schistosomulicidal activity of complement. The in vivo relevance of these observations is considered.  相似文献   

2.
Background. Human serum represents an important barrier to the entry of most mucosal organisms into tissues and to the systemic circulation. If at all present, Helicobacter pylori within gastric tissue is rare, and bacteremia for this organism has been described only once.
Methods. To assess the susceptibility of H. pylori to the bactericidal activity present in normal human serum (NHS), we examined 13 H. pylori isolates. To assess the contributions of the classical and alternative complement pathways to killing, we added either C2-deficient or factor B-deficient serum, respectively, to heat-inactivated NHS. Also we assessed the ability of the strains to bind 125I-C3.
Results. After incubation for 60 minutes at 37°C, all 13 H. pylori strains were killed by NHS; heating to 56°C for 30 minutes ablated killing, indicating complement dependence for this phenomenon. In the absence of an antibody source, there was no killing when either an alternative or classical complement pathway source was used. Adding B-deficient serum to heat-inactivated normal human serum did not restore killing, but adding C2-deficient serum permitted partial killing. All of the 13 strains bound 125I-C3. Although the kinetics varied from strain to strain, C3 bound was significantly correlated ( r = 0.61, p = 0.03) with serum susceptibility.
Conclusions. H. pylori are susceptible to complement, alternative pathway activation appears critical, and C3 binding is a major locus of variability.  相似文献   

3.
Schistosomula of Schistosoma mansoni newly transformed from cercariae by either the mechanical or skin penetration procedures, as well as 5-day-old schistosomula recovered from the lungs of mice, were tested for their ability to activate the human alternative complement pathway. Newly transformed larvae prepared by both methods, although less active than cercariae, were found to activate the pathway to a comparable degree as judged by the consumption of fluid phase C3 and factor B and the conversion of native C3 into a component with a more anodal electrophoretic mobility. The alternative pathway activating capacity could not be blocked or enhanced by pretreating the larvae with purified IgG or F(ab′)2 fragments prepared from human sera containing antibodies directed against schistosomula. In contrast to newly transformed parasites, 5-day-old schistosomula recovered from mouse lungs failed to activate the alternative pathway as judged by either the C3 or B consumption assays or the C3 conversion assay. This developmental change could not be reversed by treating lung stage larvae with neuraminidase and heparinase, enzymes which are known to alter the activating capacity of other particulate substances or with chondroitinase ABC or trypsin.  相似文献   

4.
We have examined the killing of E. coli and kinetics of lipopolysaccharide (LPS) release after the exposure of the bacteria to normal human serum (NHS) and sera deficient in complement components, or with inactivated complement components. LPS of the galactose epimerase-deficient strain E. coli J5 were specifically radiolabeled by growing the bacteria in a medium containing [3H]galactose. Exposure of the washed bacteria to NHS resulted in a significant reduction (greater than 99%) in viability within 15 min and the concomitant release of radiolabeled LPS. However, maximal release of LPS was consistently 30% of the total radiolabel incorporated into the LPS molecules. The amount of tritium-labeled LPS released was shown to be directly proportional to the concentration of bacteria exposed to NHS, suggesting that release of LPS was not limited by the availability of some critical serum component(s). The consumption of complement in NHS by incubation with E. coli was demonstrated by decreased alternative and classical pathway-specific hemolytic activity. The use of Factor D-depleted and VEM-treated human sera demonstrated that, with these bacteria, both the alternative and classical pathways of complement contribute to bacterial killing and release of LPS. It is noteworthy that, in VEM-treated and Factor D-depleted sera, the rate of killing and the kinetics of LPS release were somewhat slower as compared to control serum. Bacterial killing in C7-depleted and C9-deficient human sera was minimal. Neither killing nor LPS release occurred in heat-inactivated (56 degrees C, 30 min) human serum. The amount of [3H]LPS released by C9-deficient serum was qualitatively similar to the amount released by the action of NHS. Tritium-labeled LPS was not released in C7-depleted serum. These data indicate that bacterial killing can be dissociated from LPS release, and suggest that, whereas LPS release may be necessary for the bactericidal effects of serum complement, it is probably not sufficient to effect killing. Furthermore, a significant fraction of LPS can be removed from the outer membrane of the bacteria without an apparent affect on viability.  相似文献   

5.
When Schistosoma mansoni cercariae are incubated at 37 C in media containing serum, the organisms lose their tails and change into viable, infective schistosomula. Tail loss does not occur in the absence of serum, or when the serum is heat inactivated. In the present studies, tail loss during in vitro conversion was shown to be complement dependent. The capacity of fresh serum to promote tail loss was markedly suppressed or abolished by cobra venom factor, zymosan, Sepharose CL-4B AND anti-C3 antibody. The alternative rather than the classic complement pathway appeared to be responsible since (1) binding of anti-C3 to cercariae required magnesium, but not calcium; (2) both C4-deficient serum and C2-deficient serum supported tail loss; but (3) human serum heated to 50 C for 20 min to inactivate Factor B did not support tail loss. Cercarial tail loss also required the terminal complement components C5 through C8. The extent and rate of tail loss was normal in agammaglobulinemic sera indicating that the complement effect was not antibody dependent.  相似文献   

6.
用光镜及电镜观察小鼠中性粒细胞及中性粒细胞依赖抗体及补体对体外培养的日本血吸虫童虫 的作用。结果表明:单纯中性粒细胞很少粘附到童虫表面,仅个别十分疏松地粘附在童虫表面,被粘附 的童虫结构正常。提示:单纯中性粒细胞对童虫无明显作用,在抗体及补体协同下,中性粒细胞成群且 紧密地粘附在童虫体表,在细胞集聚的周围,虫体体被出现隧道样及火山口样变化,紧贴童虫的中性 粒细胞伸出伪足,虫体体棘紊乱,皮层变平,体被剥脱,虫体变形,说明中性粒细胞在抗体及补体协同 下,对童虫有杀伤作用、文中对杀伤机制进行了扼要的讨论。  相似文献   

7.
Schistosomula, of Schistosoma mansoni transformed by skin penetration or by mechanical means, have been compared in terms of their susceptibility to in vitro cytotoxic mechanisms, both at 3 hr of age and after culture in the presence or absence of host molecules. Three-hour skin-penetrated schistosomula exhibited a significant level of protection not shown by mechanically transformed individuals. This protection may be correlated with a decreased ability to bind anti-schistosome antibody to their surfaces and to generate C3b molecules as a result of complement activation. Skin worms cultured in the presence of human serum for up to 48 hr showed a significant enhancement of resistance, but slight or no further protection was gained from culture in the absence of host molecules. Mechanically transformed schistosomula cultured for 48 hr in the presence of serum also achieved a significant level of protection but this did not approach that exhibited by the corresponding skin worms; they gained no protection whatsoever from culture in the absence of serum. There are several mechanisms possibly responsible for conferring resistance.  相似文献   

8.
A complement-resistant line of HeLa cells (T638) was derived by serial passage of complement-susceptible HeLa cells in anti-beta 2-microglobulin (b2m) antiserum and complement. The T638 line maintained stable complement resistance when passed for an additional 1500 generations in the absence of antiserum and complement. T638 cells expressed equivalent levels of cell-associated b2m as did the parent HeLa cell line. Furthermore, T638 cells were resistant to killing by complement and anti-HeLa antiserum with specificity for molecules other than b2m. These results indicate that the resistance of T638 cells does not simply reflect loss of anti-b2m binding antigens. We next investigated the mechanism of resistance of T638 cells to complement-mediated killing. Antibody-sensitized HeLa and T638 cells both consumed CH50 activity completely from normal human serum; cytotoxicity was not mediated via the alternative complement pathway. HeLa and T638 cells caused equivalent utilization of C4 from normal human serum in the presence of antibody. Consumption of C2, greater with T638 than with HeLa cells during incubation in serum, was complete when cells bearing purified C1 and limited C4 were incubated with C2. T638 cells bound more 3H-C4 than HeLa cells during incubation in serum, but binding of 3H-C3 by T638 cells was fourfold to fivefold less than by HeLa cells. Finally, we investigated the rate of decay in the capacity of C142 on HeLa and T638 to cleave and deposit 3H-C3. The T1/2 for decay of C142-mediated binding of 3H-C3 on HeLa was 3.9 min, whereas minimal C3 deposition was detected on T638 cells at all time points. These results show that T638 cells evade complement-mediated lysis despite activating early components of the classical complement pathway. The mechanism of resistance is a failure to form an effective C3 convertase.  相似文献   

9.
Many clinical isolates of Enterococcus faecium are resistant to neutrophil (PMN)-mediated phagocytosis and killing in the presence of normal human serum. We have now examined the ability of specific polyclonal rabbit antibodies to promote opsonization and killing of phagocytosis-resistant E. faecium. Immune rabbit serum generated against formalin-killed E. faecium TX0016, a phagocytosis-resistant strain, markedly promoted binding of TX0016 organisms to PMNs and PMN-mediated killing. These effects were dramatically reduced by (a) adsorption of immune serum with E. faecium TX0016, but not by adsorption with a strain of E. faecium susceptible to phagocytosis, and (b) incubation of immune serum with carbohydrate purified from TX0016, but not by incubation with a surface protein extract from TX0016. IgG purified from immune serum was unable by itself to promote bacterial binding to PMNs. However, specific IgG was able to promote binding to PMNs and PMN-mediated killing in the presence of normal human serum as a complement source, as were F(ab')(2) and Fab fragments produced from it, and the alternative pathway of complement was sufficient to promote IgG- and F(ab')(2)-mediated opsonization. PMN complement receptor type 3, but not complement receptor type 1, was involved in bacterial binding to PMNs induced by the combination of F(ab')(2) fragments and normal human serum. These results suggest that opsonization by antibodies potentially directed against bacterial carbohydrate, in conjunction with complement activation, has an important role in the host defense against phagocytosis-resistant E. faecium.  相似文献   

10.
The time and course of damage to Schistosoma mansoni schistosomula mediated by human eosinophils and neutrophils and by antibody (A) and/or complement (C) was studied. The rate of schistosomula death was significantly higher in the complement containing systems (i.e., “A + C” or “C alone”) when compared to A alone. In general, at all the time points studied, the percentage of killing in the three systems was A + C > C alone > A alone irrespective of whether the effector cells were neutrophils or eosinophils. Preferential killing of schistosomula by eosinophils, as compared to neutrophils, was observed with C alone and A + C, but only when eosinophils and neutrophils from the same donor were compared. In contrast, eosinophils and neutrophils appeared to be equally effective in killing antibody-coated schistosomula.A comparison was made of the susceptibility to killing of schistosomula prepared mechanically or by skin penetration. There was no appreciable difference in terms of susceptibility to killing by the various combinations of eosinophils, neutrophils, antibody, and complement between these two forms of schistosomula.The preferential killing of complement-coated, as compared to antibody-coated schistosomula by eosinophils appears to be relatively rapid, an observation which may be of significance both in natural and acquired immunity to migrating larval helminths.  相似文献   

11.
Complement forms a key arm of innate immune defenses against gonococcal infection. Sialylation of gonococcal lipo-oligosaccharide, or expression of porin 1A (Por1A) protein, enables Neisseria gonorrhoeae to bind the alternative pathway complement inhibitor, factor H (fH), and evade killing by human complement. Using recombinant fH fragment-murine Fc fusion proteins, we localized two N. gonorrhoeae Por1A-binding regions in fH: one in complement control protein domain 6, the other in complement control proteins 18-20. The latter is similar to that reported previously for sialylated Por1B gonococci. Upon incubation with human serum, Por1A and sialylated Por1B strains bound full-length human fH (HufH) and fH-related protein 1. In addition, Por1A strains bound fH-like protein 1 weakly. Only HufH, but not fH from other primates, bound directly to gonococci. Consistent with direct HufH binding, unsialylated Por1A gonococci resisted killing only by human complement, but not complement from other primates, rodents or lagomorphs; adding HufH to these heterologous sera restored serum resistance. Lipo-oligosaccharide sialylation of N. gonorrhoeae resulted in classical pathway regulation as evidenced by decreased C4 binding in human, chimpanzee, and rhesus serum but was accompanied by serum resistance only in human and chimpanzee serum. Direct-binding specificity of HufH only to gonococci that prevents serum killing is restricted to humans and may in part explain species-specific restriction of natural gonococcal infection. Our findings may help to improve animal models for gonorrhea while also having implications in the choice of complement sources to evaluate neisserial vaccine candidates.  相似文献   

12.
The potential bactericidal activity of the alternative complement pathway of mammalian and reptilian sera to Borrelia burgdorferi sensu stricto (s.s.) was evaluated in vitro. Complement-mediated killing was observed when cultured spirochetes were inoculated into sera from the western fence lizard (Sceloporus occidentalis) and from the southern alligator lizard (Elgaria multicarinata), but not when they were inoculated into serum from either the deer mouse (Peromyscus maniculatus) or from humans. Spirochetes were still alive after 4 hr in lizard serum that had been preheated at 56 C for 30 min to inactivate complement. Furthermore, when lizard serum was chelated with 10 mM ethylenediaminetetraacetic acid to block all complement activation, borreliacidal activity was arrested. When lizard serum was chelated with 10 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid plus 4 mM MgCl2 to block only classical complement pathway activation, >85% of spirochetes were immobilized within 1 hr. Differences in B. burgdorferi s.s. mortality were not observed when chelators with or without MgCl2 were added to serum from either deer mice or humans. Proteins comprising the alternative complement pathway are responsible for the borreliacidal activity observed in the blood of S. occidentalis and E. multicarinata.  相似文献   

13.
The ability of Trichinella spiralis to activate complement (C) has been addressed by several investigators. However, these investigators employed methods in which either detection of C fragments on the parasite surface or the adherence of leukocytes to the parasite was considered an indication of C activation. The present studies were undertaken to examine: (a) whether activation of C occurs via the classical and/or alternative pathway, (b) at which stage(s) of the parasite C activating capacity is acquired, and (c) what molecular entities of the epicuticle and/or cuticle are responsible for initiating C activation. Our studies indicate that T. spiralis activates C primarily via the alternative pathway (and weakly via the classical pathway) since incubation of parasites obtained from infected mice with either normal human serum (NHS) or Mg.EGTA-NHS, followed by incubation (1 hr, 37 degrees C) with antibody-sensitized sheep erythrocytes or rabbit erythrocytes, respectively, showed a time-and parasite number-dependent depletion of C. Although the three stages of T. spiralis, i.e., infective larvae, adults and newborn larvae, are capable of activating C, the newborn appears to be the most potent activator, especially when parasite number and size are taken into consideration. Further evidence of C activation is obtained from SDS-PAGE and Western blot analysis in which homogenates of parasites preincubated with NHS showed the presence of C3, C9, and C1q, whereas controls without serum were negative. Since isolated C1q was also capable of directly binding to the surface of adults and infective larvae, it is postulated that their cuticle and/or epicuticle may possess surface structures which serve as binding sites for C1q.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The opsonic requirements for phagocytosis of S. pneumoniae types 6, 7, 18, and 23 were determined in normal and C2 deficient serum, and in normal serum chelated with magnesium ethyleneglycoltetraacetic acid. All four strains were effectively opsonized via the alternative complement pathway, a finding suggesting that the capsular polysaccharides of these strains activated complement via the alternative pathway. Since bacteremic pneumococcal disease is often associated with circulating capsular polysaccharide, it was considered that this cellular component may activate complement in vivo and impair host defenses by producing an opsonic defect for pneumococci. To examine this hypothesis, serum was incubated with suspensions of whole S. pneumoniae types 6, 7, 18, or 23 or with purified capsular polysaccharide from each of these types, and residual complement activity and opsonic capacity were measured. Hemolytic C 3--9 complement activity and opsonic capacity for 3H-thymidine labeled Salmonella typhimurium, a species effectively opsonized via the alternative pathway, were reduced in serum following incubation. Polysaccharide concentrations as low as 1 microgram/ml inhibited serum opsonic capacity for salmonella. Whole pneumococci and pneumococcal capsular polysaccharide also inhibited the opsonic activity of human C2 deficient serum for salmonella, further evidence for activation of complement via the alternative pathway. Pneumococcal capsular polysaccharide markedly inhibited the opsonic capacity of normal serum for the homologous pneumoccal type. Thus, amounts of pneumococcal capsular polysaccharide, similar to those found in the serum of patients with pneumococcal disease, bring about decomplementation of serum via activation of the alternative pathway and inhibit pneumococcal opsonization.  相似文献   

15.
Resistance to Schistosoma mansoni infection in the mouse has been induced either specifically by a primary infection with this parasite or nonspecifically by a variety of immunostimulants such as BCG. In the present study we developed an in vitro system to examine the effector mechanism of nonspecifically induced resistance. Activated macrophage monolayers obtained from BCG- or Corynebacterium parvum treated mice killed a respective mean 32 +/- 6% and 48 +/- 5% of schistosomula after 24 hr incubation. The killing of the parasites was verified by their inability to mature to adult worms upon injection into normal mice. The activated macrophage-mediated killing was related to cell:parasite ratio, and was partially lost if the macrophage monolayers were kept in cultures for 24 hr before incubation with the organism. Supernatants of macrophages cultured in the presence of schistosomula killed a mean of 51 +/- 3% of the organisms whereas those from cells cultured alone resulted in a mean killing of 25 +/- 3%. Furthermore, toxic supernatants could be generated equally well on incubation with S. mansoni schistosomula or Trichinella spiralis larvae. Our data show that activated macrophage monolayers through soluble mediators destroy a significant proportion of the multicellular parasite S. mansoni schistosomula in vitro.  相似文献   

16.
Inhibition of immune precipitation by complement   总被引:5,自引:0,他引:5  
Normal human complement serum (NHS) inhibited precipitin reactions between tetanus toxoid and human or rabbit anti-tetanus toxoid IgG antibody, between bovine serum albumin (BSA) and rabbit anti-BSA IgG antibody, and between hen egg albumin and rabbit anti-egg albumin IgG antibody. Ethylene-diaminetetraacetic acid (EDTA) prevented this inhibition. Mg-ethyleneglycol-bis(aminoethyl)-tetra-acetic acid-(EGTA) also prevented the inhibition except with lower concentrations of antibody and antigen. Therefore, the inhibition of immune precipitation seemed to occur mainly through the classical pathway of complement activation. The alternative pathway was usually dispensable, but it augmented the inhibition. Guinea pig complement serum (NGS) was less effective than NHS in inhibiting immune precipitation. Guinea pig serum deficient in C4 (C4DGS) did not inhibit the immune precipitation. Mouse complement serum was effective for inhibiting precipitation, and C5-deficient serum was as effective as normal serum. Therefore, the inhibition of immune precipitation is considered to occur by activation of complement up to the step of C3. The size of the soluble immune complexes formed in the presence of NHS varied depending on the concentrations of antibody and antigen, even when the ratio of antigen to antibody was constant. On incubation at 37 degrees C immune precipitation was inhibited by 1/2 dilution of NHS for 2 to 3 hr and then gradually increased to the level in the absence of complement. When the immune complexes were formed in the presence of serum containing complement, fragments of C4 and C3 were incorporated into the soluble immune complexes. The C3 fragments incorporated into the soluble complexes were C3b, iC3b, C3c, and C3d, some of which were bound covalently with heavy chains of IgG antibody molecules. Some of the covalent linkages between C3 fragments and IgG seemed to be destroyed by alkali treatment, but not by hydroxylamine treatment. The formation of covalent bonds between IgG and C3 and probably C4 was essential for inhibition of immune precipitation, because inhibitors of their formation, such as putrescine, cadaverine, and salicylhydroxamic acid, effectively prevented the inhibition of precipitation. When antigen and antibody reacted in the presence of mixtures of various combinations of isolated complement components, C1, C4, C2, and C3 showed maximal inhibition of immune precipitation, whereas factors I and H had little effect.  相似文献   

17.
Liposomal model membranes were found to activate the alternative pathway of human complement. Activation was measured by C3 conversion and component consumption in serum that had been incubated with liposomes. C3 conversion did not require C1 or C2 of the classical pathway, since it was observed in serum from a C1r-deficient patient, serum from a C2-dificient patient, and normal serum in buffer containing EGTA and MgCl2. The incubation of liposomes with C2-deficient serum resulted in consumption of components C3 through C9 with no consumption of C1 or C4 in a profile typical of alternative pathwya activation. The reaction was further shown to require alternative pathway factor D, and to be independent of antibody. Activation of the alterative pathway was dependent on the membrane composition of the liposomes. A positive charge was required for liposomes to produce C3 conversion. Liposomal cholesterol concentration and phospholipid fatty acyl chain length and unsaturation all influenced activation, suggesting the importance of membrane fluidity. Positively charged liposomes containing dimyristoyl phosphatidylcholine and cholesterol required the presence of certain glycolipids for C3 conversion. The activation of the alternative complement pathway by liposomes of defined membrane composition may provide a suitable model for the study of alternative pathway activation by cellular membranes.  相似文献   

18.
Human serum induces cytolysis of mouse thymus and thymoma cells, and cytostasis of mouse bone marrow and spleen cells, and various methylcholanthrene-induced tumour cells. The latter was manifested by deficient metabolic activity when cultured in the presence of fresh human sera. Decomplementation procedures demonstrated that these heterocytotoxic effects are mediated in part via activation of the alternative complement pathway in human serum samples. The presence of properdin and C3 on the target cell surface was confirmed by immune adherence and indirect immunofluorescent tests. Activation of the alternative complement pathway was elicited by incubation of the human serum with the relevant target cells, resulting in the appearance of the cathodal migrating fragment of the factor B, denoting complement activation. The following publication will present evidence that activation of the alternative complement pathway takes place via an antibody-independent mechanism acting at the cell surface. These and other observations in the literature raise the possibility that activation of the alternative complement pathway by surface cell receptors on tumour cells represents a mechanism of natural immunity versus tumours.  相似文献   

19.
Infective- and vertebrate-stage trypomastigotes of Trypanosoma cruzi resist serum killing by the alternative complement pathway, whereas noninfective vector-stage epimastigotes, from which trypomastigotes derive, are serum-sensitive. This form of developmental preadaption is commonly observed in protozoan parasites, but its mechanisms are poorly understood. We have demonstrated previously that trypomastigotes spontaneously shed molecules which interfere with formation and accelerate the intrinsic decay of complement C3 convertases, a finding which may explain the evasion of complement lysis by trypomastigotes. We now describe the partial purification and characterization of the T. cruzi C3 convertase inhibitor from the supernatant of culture metacyclic and tissue culture trypomastigotes. Decay-accelerating activity for both classical and alternative pathway C3 convertases copurifies on anion-exchange fast protein liquid chromatography and chromatofocusing with 35S-labeled molecules of 87-93 kDa, pI 5.6-5.8. The labeled components are destroyed by papain and retained on concanavalin A-Sepharose, procedures which remove functional decay-accelerating activity from the supernatant. The 87-93-kDa components are immunoprecipitated by sera from patients chronically infected with T. cruzi, but not by antisera to any known regulatory proteins of the human complement cascade. Lytic activity for tissue culture trypomastigotes in chagasic sera is associated with antibody reactivity against the 87-93-kDa 35S-labeled components and with inhibition of decay-accelerating activity. The T. cruzi factor is the first developmentally regulated microbial complement inhibitor to be biochemically characterized.  相似文献   

20.
The interaction of fresh serum with promastigotes of Leishmania major, L. donovani, L. mexicana mexicana, L. mexicana amazonensis, and L. braziliensis guyanensis results in lysis of all strains tested with either fresh human or guinea pig serum at 37 C for 30 min. Lysis does not occur in the cold and requires divalent cations and complement that is active hemolytically. Serum deficient in the eighth component of complement is not lytic. Lysis of L. major, L. mexicana, and L. braziliensis proceeds fully in human serum containing EGTA/Mg2+ or in guinea pig serum deficient in the fourth complement component. These species consume only small amounts of C4 from human serum and do not require calcium to optimally bind C3. The data indicate that all are activators of the alternative complement pathway and that the classical pathway is not required for the lysis of these organisms. Promastigotes of L. donovani, in contrast, activate the classical pathway. The presence of calcium is required for both optimal C3 binding and parasite lysis, and L. donovani promastigotes consume C4 when incubated in human serum. In high concentrations, human serum agglutinates all tested Leishmania spp. The agglutinating factor does not require divalent cations, is heat stable, and works at 4 C, suggesting that it is an antibody. This "naturally occurring" antibody cross reacts with all Leishmania spp. and agglutinates them. The adsorption of serum with any Leishmania species or with beads that are Protein A coated, removes the agglutinogen. This factor causes a slight enhancement in alternative pathway activation by L. major and mediates the classical activation by L. donovani. In adsorbed serum, L. donovani promastigotes only weakly activate the alternative complement pathway. Increased concentrations of adsorbed serum are therefore necessary for lysis to proceed. The titer can be partially restored by the addition of heat inactivated serum. Using purified components of the classical cascade, we are unable to visualize surface bound C3 on L. donovani promastigotes unless heat inactivated serum is also present. We conclude that all Leishmania spp. promastigotes are susceptible to lysis by normal serum independent of antibody. The presence of small amounts of naturally occurring antibody in human serum enhances the susceptibility of L. donovani promastigotes to lysis by activating the classical complement pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号