首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gnathiid species (Crustacea: Isopoda; one of the most common ectoparasites of coral reef fishes) from the Great Barrier Reef, Australia, was allowed to choose among fishes from three different families to feed on (using two species of fishes per family). Gnathiids showed a strong preference for labrids, rarely feeding on pomacentrids or apogonids. In a separate experiment, gnathiid host preference did not vary among three labrid fish species. Gnathiids that fed on labrids had higher survival than those that fed on apogonids. Male gnathiids that fed on labrids also moulted to the adult stage more quickly. This suggests that host specialization and local adaptation might be occurring between these ectoparasites and their host fishes at the host fish family level.  相似文献   

2.
Coral bleaching is an increasingly prominent threat to coral reef ecosystems, not only to corals, but also to the many organisms that rely on coral for food and shelter. Coral-feeding fishes are negatively affected by coral loss caused by extensive bleaching, but it is unknown how feeding behaviour of most corallivorous fishes changes in response to coral bleaching. In this study, coral bleaching was experimentally induced in situ to examine the feeding response of two obligate corallivorous fish, Labrichthys unilineatus (Labridae) and Chaetodon baronessa (Chaetodontidae). Feeding rates were monitored before, during, and immediately after experimental bleaching of prey corals. L. unilineatus significantly increased its feeding on impacted corals during bleaching, but showed a steady decline in feeding once corals were fully bleached. Feeding response of L. unilineatus appears to parallel the expected stress-induced mucous production by bleaching colonies. In contrast, C. baronessa preferentially fed from healthy colonies over bleached colonies, although bleached colonies were consumed for five days following manipulation. Feeding by corallivorous fishes can play an important role in determining coral condition and mortality of corals following stress induced bleaching.  相似文献   

3.
Animals that care for their offspring may vary the amount of care provided for a particular brood in relation to environmental conditions. Food availablity is one factor that may affect the costs and benefits associated with parental investment. The convict cichlid, Cichlasoma nigrofasciatum, is a small, substrate-spawning cichlid from Central America. Both male and female provide parental care for eggs and fry. Paris were kept at one of three ration levels, high, medium or low. Time spent in parental fanning by females was positively related to ration. Males spent less time fanning than females and their parental behaviour varied considerably between individuals. Males on the high ration spent slightly more time fanning than those on the lower rations. The number of eggs produced per spawning and the post-spawning weight of both males and females were significantly and positively related to ration. Foraging frequency of both males and females was inversely related to ration. There was no significant effect of ration on the frequency of mouthing eggs and young or on intra-pair aggression. Eggs of low-ration fish hatched earlier than those of medium- and high-ration fish but there was no significant difference in the number of days that the young survived. These results suggest that the allocation of time and effort between parental and maintenance activities differs in relation to food supply. Parents may provide more care for the large brood produced when food is plentiful but place more emphasis on their own survival when food is short and broods are small.  相似文献   

4.
Mass spawning of corals provides a large seasonal pulse of high-energy prey that potentially benefits reef fish that are capable of capturing and digesting coral propagules. This study examines the range of fish species that consume coral propagules and also tests whether reef fish experience a significant increase in physiological condition when feeding on coral propagules. Thirty-six species of diurnal reef fish were seen to consume coral propagules released during mass coral spawning. Stomach content analyses of three reef fish species (Pomacentrus moluccensis, Abudefduf whitleyi, and Caesio cunning) revealed that both P. moluccensis and A. whitleyi feed almost exclusively on coral propagules during mass coral spawning. Fish feeding extensively on coral propagules also amassed considerable lipid stores, which could greatly improve the quality and survivorship of their progeny. In contrast, C. cunning consumed only very small quantities of coral propagules, and showed no detectable change in lipid stores during the course of the study. This study provides the first direct evidence that reef fish benefit from mass coral spawning, and reveals a potentially significant trophic link between scleractinian corals and reef fish. Accepted: 9 June 2000  相似文献   

5.
Booth DJ  Beretta GA 《Oecologia》2004,140(2):289-294
Settlement rate is considered to be a major determinant of the population structure of coral reef fishes. In this study, the effects of larval physiological condition on survival, predation risk and competitive ability are assessed for a small damselfish, Pomacentrus moluccensis. New settlers were collected and fed for 5 days to produce high and low condition (measured as lipid) treatment fish. In a field experiment, pairs (one high and one low condition fish) were transplanted to corals. Persistence over 2 weeks was much higher (100% vs. 25%) in high condition fish. In mixed groups in the laboratory, high condition fish were both aggressively dominant and consumed more of a limiting prey source than low condition fish. In addition, low condition fish were shown to be at much higher risk of predation. All of the low condition fish but only 33% of high condition fish in mixed groups were consumed by fish predators, and in a separate experiment, 73% of feeding strikes by predators were directed at low condition fish. Quality of new settlers can have an important influence on subsequent juvenile survival. The mechanisms for this effect are likely to include a combination of effects of condition on food competition and predation risk.  相似文献   

6.
Greenback flounder Rhombosolea tapirina ( c. 2 g) fed to satiation had significantly ( P <0·01) higher feed consumption in the evening than in the morning whereas there was no difference between feeding times for flounder fed restricted rations (1 or 2% body weight per day) because they consumed all of the ration. Differences in growth performance were due to feeding time and ration. Carcass moisture, lipid and energy content were significantly ( P <0·001) different between rations; length gain was significantly affected by feeding time ( P <0·05) and ration ( P <0·001); weight gain showed a significant ( P <0·001) interaction between feeding time and ration. The relationship between feed consumption and specific growth rate showed that the exponential gradient was significantly higher ( P <0·01) for the evening fed fish and indicated feed efficiency for evening fed fish increased as feed consumption increased. Urea excretion increased from 12–20 to 58–63% of total nitrogen excretion at the 1 and 3% rations, respectively. Ammonia and urea excretion were significantly affected by ration ( P <0·001) and feeding time ( P <0·05). Fish fed the 2% ration in the evening had higher growth efficiency and significantly ( P <0·01) lower rates of urea excretion than fish fed 2 or 3% ration in the morning. It is suggested that the higher energetic costs associated with differences in ammonia and urea excretion contributed to differences in growth efficiency.  相似文献   

7.
This study measured the effects of regular and irregular intervals between feeds on the growth performance of juvenile Gasterosteus aculeatus . The experimental period was 21 days at 14) C and photoperiod of 10L: 14D. The fish were housed individually. The control fish received a constant ration every day. Fish on a constant interval were fed on days 1, 5, 9, 13, 17 and 21. Fish on a random regime were fed with the same average interval between feedings, but the interval varied randomly between 1 and 5 days. The rations were calculated so that over the 21-day period, all fish were supplied with the same total quantity of food. The two ration levels were: 2% (maintenance ration) and 6% of the initial body weight per day. At a given ration, the feeding interval had no significant effect on specific growth rate, RNA/DNA ratio and lipid contents. The percentage dry matter was slightly, but significantly lower in treatment groups than in the control group. Groups receiving a mean 2% ratio consumed all the food supplied. At a mean ration of 6%, the control group ate 100%, the regular interval group 95·4% and the irregular interval 98·3% of the total food supplied. For the temporal patterns of feeding used, the fish were able to adjust their food intake, when food become available, to compensate for short periods of food deprivation and maintain their growth performance except for a decrease in dry matter content.  相似文献   

8.
Synopsis The relationships between food availability, consumption and growth were analyzed from the onset of feeding to an age of 90 days in three cyprinid species. Fish were held at 20 ± 0.5° C and given two (three) constant rations of approximately 30, (40) or 100% dry body weight (dbw) ind-1 day-1. Food consisted of living zooplankton, the size of which correlated with fish size. At high food densities consumption rates decreased rapidly with fish size in all three species. At reduced rations, fish consumed most of the food offered until they were larger than 10 mg dbw. In all species and at each feeding level daily rations consumed increased allometrically with body size. Respiration rate, expressed as routine metabolic rate differed insignificantly between the three species. At high ration levels, growth rates of small bleak, Alburnus alburnus, were distinctly lower than those of roach, Rutilus rutilus, and blue bream, Abramis ballerus. At low food supply all three species grew at similar rates. Assimilation efficiency at low food conditions was approximately twice that of the well-fed groups. If the caloric equivalents of oxygen consumption as measured in well-fed fish are applied to fish fed at low rations their energy budgets do not balance. This indicates the limitations of fish larvae in the partitioning of energy for growth or activity at such conditions.  相似文献   

9.
Despite the ubiquity of micropredators and parasites on coral reefs, their effects on the survival and growth of juvenile fishes are virtually unstudied. Caging and laboratory experiments were used to investigate whether reef based micropredators fed on recently metamorphosed damselfish, the time of day that micropredation occurred, and whether micropredation affected fish growth and survival. Caged juveniles of the damselfish, Pomacentrus moluccensis, were held on the reef over four consecutive time periods. Micropredators (gnathiid and cirolanid isopods) were found associated with caged fish at night only, and cirolanids were observed attacking and killing some caged fish. In order to test the effect of micropredation on growth and survival without the influence of predatory fishes, groups of five P. moluccensis were caged for 2 weeks in one of three treatments: micropredators excluded, mesh control, or micropredators present. There were no significant differences in survival among the treatments, but fish were larger in cages with fewer survivors suggesting that competition for food was intense. Fish exposed to micropredators were larger than fish in the other two treatments, however, micropredator exclusion also excluded plankton; thus, differences in food availability among treatments during crepuscular periods likely confounded the treatment effect on fish growth. A laboratory growth experiment was performed to better control food availability and minimise handling stress, using a validated host-micropredator model. Individual juvenile damselfish, Dischistodus perspicillatus, were exposed to 0, 1 or 2 micropredators (Gnathia falcipenis) each evening and fed equally for 8 days. Mortalities only occurred in fish exposed to micropredators on the first evening of the experiment, and fish exposed to two micropredators each evening were significantly smaller than unexposed fish. These results suggest that repeated gnathiid infections can reduce fish growth in the first week after settlement. Consequently, micropredation may affect the ecology of damselfish after settling on coral reefs.  相似文献   

10.
Making the appropriate decision in the face of predation risk dictates the fate of prey, and predation risk is highest at life history boundaries such as settlement. At the end of the larval phase, most coral reef fishes enter patches of reef containing novel predators. Since vision is often obscured in the complex surroundings, chemical information released from damaged conspecific is used to forewarn prey of an active predator. However, larvae enter the reef environment with their own feeding and growth histories, which will influence their motivation to feed and take risks. The present study explored the link between recent growth, feeding history, current performance and behavioural risk taking in newly settling stages of a coral reef damselfish (Pomacentrus amboinensis). Older and larger juveniles in good body condition had a stronger response to chemical alarm cues of injured conspecifics; these fish spent a longer time in shelter and displayed a more dramatic decrease in foraging behaviour than fish in lower body condition. Feeding experiments supported these findings and emphasized the importance of body condition in affecting risk assessment. Evidently, larval growth history and body condition influences the likelihood of taking risks under the threat of predation immediately after settlement, thereby affecting the probability of survival in P. amboinensis.  相似文献   

11.
Although the global decline in coral reef health is likely to have profound effects on reef associated fishes, these effects are poorly understood. While declining coral cover can reduce the abundance of reef fishes through direct effects on recruitment and/or mortality, recent evidence suggests that individuals may survive in disturbed habitats, but may experience sublethal reductions in their condition. This study examined the response of 2 coral associated damselfishes (Pomacentridae), Chrysiptera parasema and Dascyllus melanurus, to varying levels of live coral cover. Growth, persistence, and the condition of individuals were quantified on replicate coral colonies in 3 coral treatments: 100% live coral (control), 50% live coral (partial) and 0% live coral (dead). The growth rates of both species were directly related to the percentage live coral cover, with individuals associated with dead corals exhibiting the slowest growth, and highest growth on control corals. Such differences in individual growth between treatments were apparent after 29 d. There was no significant difference in the numbers of fishes persisting or the physiological condition of individuals between different treatments on this time-scale. Slower growth in disturbed habitats will delay the onset of maturity, reduce lifetime fecundity and increase individual's vulnerability to gape-limited predation. Hence, immediate effects on recruitment and survival may underestimate the longer-term impacts of declining coral on the structure and diversity of coral-associated reef fish communities.  相似文献   

12.
Studies on feeding ecology of fishes are important for understanding ecosystem structure and function. This study tested the hypothesis of diet and niche breath variation in the marbled parrotfish (Leptoscarus vaigiensis) among coral reefs of different protection levels in Kenya. Fish samples were obtained from protected (Malindi and Watamu marine parks), moderately fished (Malindi and Watamu marine reserves) and highly fished (Vipingo and Kanamai) reefs. Total lengths of fish samples were measured and their stomach contents quantified using the point method. Seasonal dietary composition, niche breaths and feeding intensities were compared between the sites using multivariate statistics. Results showed the parrotfish is a predominantly reef macroalgal grazer. Fish from protected sites fed on diverse dietary items compared to those from reserves and highly fished sites. Fish niche breadths differed between sites and seasons. Higher niche breadths occurred in protected sites during the north‐east monsoon, while higher values occurred at fished sites during the south‐east monsoon season. This study, the first of its kind in Kenya and most of the western Indian Ocean, describes feeding in the marbled parrotfish and spatial variation in niche breadth as influenced by fishing pressure, environmental variability and biological interactions.  相似文献   

13.
The origin and structure of Tutia Reef, a coral reef off the Tanganyika coast, is described. It is concluded that the reef is formed in part from the cutting back flat of the older reef 14 ft above the level of the present reef, and in part from seaward growth of the reef.
Based on lines of quadrats down three sides of the reef an assessment of the cover of living coral on the reef is made, and the distribution of the dominant corals of the reef described. It is suggested that, contrary to the views of Crossland (1902, 1903), many East African coral reefs are undergoing seaward growth.
The distribution of the fishes on the reef is described, and a correlation is shown with the distribution of living coral on the reef. Many species of fishes have restricted distribution on the reef.
The feeding relationships of the fishes are discussed, and the total fish biomass divided into separate feeding categories. Tutia Reef has a low biomass of herbivorous fishes compared with the results from Eniwetok Atoll obtained by Odum & Odum (1955). This is considered to be due to the fact that Tutia Reef exhibits characteristics of an outer reef, deriving much of its energy from plankton, not those of an enclosed and almost autotrophic logoon.  相似文献   

14.
Live corals are the key habitat forming organisms on coral reefs, contributing to both biological and physical structure. Understanding the importance of corals for reef fishes is, however, restricted to a few key families of fishes, whereas it is likely that a vast number of fish species will be adversely affected by the loss of live corals. This study used data from published literature together with independent field based surveys to quantify the range of reef fish species that use live coral habitats. A total of 320 species from 39 families use live coral habitats, accounting for approximately 8 % of all reef fishes. Many of the fishes reported to use live corals are from the families Pomacentridae (68 spp.) and Gobiidae (44 spp.) and most (66 %) are either planktivores or omnivores. 126 species of fish associate with corals as juveniles, although many of these fishes have no apparent affiliation with coral as adults, suggesting an ontogenetic shift in coral reliance. Collectively, reef fishes have been reported to use at least 93 species of coral, mainly from the genus Acropora and Porities and associate predominantly with branching growth forms. Some fish associate with a single coral species, whilst others can be found on more than 20 different species of coral indicating there is considerable variation in habitat specialisation among coral associated fish species. The large number of fishes that rely on coral highlights that habitat degradation and coral loss will have significant consequences for biodiversity and productivity of reef fish assemblages.  相似文献   

15.
在实验室27℃水温下,研究了少食、中食和饱食三个摄食水平对0至25日龄雌雄食蚊鱼(Gambusia affinis)的生长发育特征和饵料利用效率的影响。26d饲养实验结束后,对试验鱼摄食和生长指标、臀鳍分化、性成熟及饵料转换效率进行分析。结果显示:到臀鳍开始分化时,饱食组雄鱼的累计摄食总能量和生长速度开始小于雌鱼,且随日龄的增加差异加大;随摄食水平的增加,0日龄仔鱼到臀鳍分化和性成熟的时间缩短。至实验结束,各摄食组的雄鱼均形成发育完善的生殖足,性腺都达到成熟状态;而雌鱼性成熟迟于雄鱼,且其性成熟更易受到摄食水平的影响,饱食组只有约50%的个体达到性成熟,少食组的卵母细胞则均处在小生长期。随着摄食水平的增加,雌雄鱼的体长、体重和干物质特定生长率均呈明显上升趋势,而干物质饵料转化效率则呈明显下降趋势;实验结束时,雌鱼的生长指标和干物质饵料转化率均大于雄鱼。以上结果表明,伴随臀鳍的分化,食蚊鱼在摄食、生长、发育、性成熟和应对食物丰度变化上表现出显著的性别差异。    相似文献   

16.
The speed with which individuals can learn to identify and react appropriately to predation threats when transitioning to new life history stages and habitats will influence their survival. This study investigated the role of chemical alarm cues in both anti-predator responses and predator identification during a transitional period in a newly settled coral reef damselfish, Pomacentrus amboinensis. Individuals were tested for changes in seven behavioural traits in response to conspecific and heterospecific skin extracts. Additionally, we tested whether fish could learn to associate a previously novel chemical cue (i.e. simulated predator scent) with danger, after previously being exposed to a paired cue combining the conspecific skin extract with the novel scent. Fish exposed to conspecific skin extracts were found to significantly decreased their feeding rate whilst those exposed to heterospecific and control cues showed no change. Individuals were also able to associate a previously novel scent with danger after only a single previous exposure to the paired conspecific skin extract/novel scent cue. Our results indicate that chemical alarm cues play a large role in both threat detection and learned predator recognition during the early post-settlement period in coral reef fishes.  相似文献   

17.
Tsounis  G.  Steele  M. A.  Edmunds  P. J. 《Coral reefs (Online)》2020,39(5):1299-1311

Increasing abundance of arborescent octocorals (often referred to as gorgonians) on Caribbean reefs raises the question of whether habitat structure provided by octocorals can mediate a transition between coral- and algal- dominated states by increasing fish abundance and herbivory. This study tested the hypotheses that feeding rates and densities of demersal reef fishes are affected by the habitat structure provided by dense octocoral communities. Surveys of fishes on coral reefs in St John, US Virgin Islands, found 1.7-fold higher densities, and 2.4-fold higher feeding rates within versus outside of dense octocoral canopies. This difference, however, was only seen at sites with octocoral densities > 8 colonies m−2. Furthemore, the proximity of octocoral colonies to fish had an effect on the grazing rate of key herbivores (surgeonfishes and parrotfishes), with a 53% higher feeding rate (1.90 ± 0.11 bites min−1 m−2) near octocorals (< 20 or 30 cm, depending on the site) versus farther from them (1.24 ± 0.09 bites min−1 m−2). Finally, within the canopy of dense octocoral communities (17 colonies m−2), reef fishes fed at a rate that was 2.2-fold higher within the community than at the edge of the community that faced an adjacent sand patch. Fish abundance, however, was not uniformly higher within versus at the edge of the octocoral community, as ecotone specialists such as gobiids, blennioids, ostraciids, holocentrids, labrids, and pomacentrids were 1.3—2.3 times more abundant at the edge. In contrast, other taxa of demersal fishes, notably herbivores, were twice as abundant within octocoral communities than at the edges. Together, these results reveal an association between habitat structure created by octocorals on shallow reefs and increased feeding rates of demersal fishes (including those of herbivores). The potential of octocorals to increase herbivory that could mediate stony coral recovery is therefore worthy of further study.

  相似文献   

18.
Corals create complex reef structures that provide both habitat and food for many fish species. Because of numerous natural and anthropogenic threats, many coral reefs are currently being degraded, endangering the fish assemblages they support. Coral reef restoration, an active ecological management tool, may help reverse some of the current trends in reef degradation through the transplantation of stony corals. Although restoration techniques have been extensively reviewed in relation to coral survival, our understanding of the effects of adding live coral cover and complexity on fishes is in its infancy with a lack of scientifically validated research. This study reviews the limited data on reef restoration and fish assemblages, and complements this with the more extensive understanding of complex interactions between natural reefs and fishes and how this might inform restoration efforts. It also discusses which key fish species or functional groups may promote, facilitate or inhibit restoration efforts and, in turn, how restoration efforts can be optimised to enhance coral fish assemblages. By highlighting critical knowledge gaps in relation to fishes and restoration interactions, the study aims to stimulate research into the role of reef fishes in restoration projects. A greater understanding of the functional roles of reef fishes would also help inform whether restoration projects can return fish assemblages to their natural compositions or whether alternative species compositions develop, and over what timeframe. Although alleviation of local and global reef stressors remains a priority, reef restoration is an important tool; an increased understanding of the interactions between replanted corals and the fishes they support is critical for ensuring its success for people and nature.  相似文献   

19.
To determine whether enhancing the survival of new recruits is a sensible target for the restorative management of depleted coral‐reef fish populations, settlement‐stage ambon damsel fish Pomacentrus amboinensis were captured, tagged and then either released immediately onto small artificial reefs or held in aquaria for 1 week prior to release. Holding conditions were varied to determine whether they affected survival of fish: half the fish were held in bare tanks (non‐enriched) and the other half in tanks containing coral and sand (enriched). Holding fish for this short period had a significantly positive effect on survivorship relative to the settlement‐stage treatment group that were released immediately. The enrichment of holding conditions made no appreciable difference on the survival of fish once released onto the reef. It did, however, have a positive effect on the survival of fish while in captivity, thus supporting the case for the provision of simple environmental enrichment in fish husbandry. Collecting and holding settlement‐stage fish for at least a week before release appear to increase the short‐term survival of released fish; whether it is an effective method for longer‐term enhancement of locally depleted coral‐reef fish populations will require further study.  相似文献   

20.
Settlement-stage larvae of the coral reef fishes Ostorhinchus doederleini (Apogonidae) and Pomacentrus coelestis (Pomacentridae) prefer the odor of their settlement reef to that of other nearby reefs. It was unknown whether these olfactory preferences are temporally stable or the result of recent olfactory experience. Ostorhinchus doederleini and P. coelestis larvae were held in aquaria and exposed to water from either their settlement reef or a neighboring reef for 5–9 days and their olfactory preference was tested. We show that exposure to water from another reef did not influence olfactory preference. Ostorhinchus doederleini olfactory preference declined slightly over time whereas P. coelestis preference was gradually lost after 2–3 days in captivity. Neither species switched their preference to the new reef odor. While we cannot determine conclusively the time window of odor learning, imprinting at or shortly after birth is logical and has been demonstrated in other fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号