首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Insect Biochemistry》1990,20(5):511-516
Trehalose-hydrolyzing enzymes from particulate and cytosolic components of the thoracic musculature of Periplaneta americana were isolated and purified to homogeneity. The molecular weights of the respective enzymes were determined by SDS-polyacrylamide gel electrophoresis and Sephadex G-150 column chromatography and estimated to be 80,000 Da for the cytosolic enzyme whereas the solubilized enzyme of particulate origin has a molecular weight of approx. 110,000 Da. The cytosolic enzyme hydrolyzes a number of α-glycosides in addition to trehalose and, therefore, may be classified as a general α-glucosidase whereas the particulate enzyme exhibits stringent specificity for trehalose. Chemical modification of the particulate trehalase has revealed involvement of carboxyl and imidazole functions in the catalytic mechanism. Of various compounds tested, castanospermine was the most potent inhibitor of the enzyme.  相似文献   

2.
From the genome analysis of the Mycobacterium tuberculosis two putative genes namely GlyA and GlyA2 have been proposed to encode for the enzyme serine hydroxymethyltransferase. We have cloned, overexpressed, and purified to homogeneity their respective protein products, serine hydroxymethyltransferase, SHM1 and SHM2. The recombinant SHM1 and SHM2 exist as homodimers of molecular mass about 90 kDa under physiological conditions, however, SHM2 has more compact conformation and higher thermal stability than SHM1. The most interesting structural observation was that the SHM1 contains 1 mol of pyridoxal 5'-phosphate (PLP)/mol of enzyme dimer. This is the first report of such a unique stoichiometry of PLP and enzyme dimer for SHMT. The SHM2 contains 2 mol of PLP/mol of enzyme dimer, which is the usual stoichiometry reported for SHMT. Functionally both the recombinant enzymes showed catalysis of reversible interconversion of serine and glycine and aldol cleavage of a 3-hydroxyamino acid. However, unlike SHMT from other sources both SHM1 and SHM2 do not undergo half-transamination reaction with d-alanine resulting in formation of apoenzyme but l-cysteine removed the prosthetic group, PLP, from both the recombinant enzymes leaving the respective inactive apoenzymes. Comparative structural studies on the two enzymes showed that the SHM1 is resistant to alkaline denaturation up to pH 10.5, whereas the native SHM2 dimer dissociates into monomer at pH 9. Urea- and guanidinium chloride-induced two-step unfolding of SHM1 and SHM2 with the first step being dissociation of dimer into apomonomer at low denaturant concentrations followed by unfolding of the stabilized monomer at higher denaturant concentrations.  相似文献   

3.
We have discovered a multienzymatic complex in fresh young sugarcane leaves. This complex is constituted of three enzymes: PEPcase, NADP-MDH and malic enzyme. After successive molecular sieving chromatography, we have obtained a highly purified sample of the complex which has a molecular weight of 711 kDa. Its functional interest has been evaluated by comparing the kinetic properties of the enzymes in their free forms to those in their complexed form. We show that the association of the three enzymes leads to important changes in their respective kinetic properties.  相似文献   

4.
In continued efforts to develop enzymatic assays for lysosomal storage diseases appropriate for newborn screening laboratories we have synthesized novel and specific enzyme substrates for Maroteaux–Lamy (MPS VI) and Morquio A (MPS IVA) diseases. The sulfated monosaccharide derivatives were found to be converted to product by the respective enzyme in blood from healthy patients but not by blood from patients with the relevant lysosomal storage disease. The latter result shows that the designed substrates are highly selective for the respective enzymes.  相似文献   

5.
This review gives an overview on the occurrence of sulfatases in Prokaryota, Eukaryota and Archaea. The mechanism of enzymes acting with retention or inversion of configuration during sulfate ester hydrolysis is discussed taking two complementary examples. Methods for the discovery of novel alkyl sulfatases are described by way of sequence-based search and enzyme induction. A comprehensive list of organisms with their respective substrate scope regarding prim- and sec-alkyl sulfate esters allows to assess the capabilities and limitations of various biocatalysts employed as whole cell systems or as purified enzymes with respect to their activities and enantioselectivities. Methods for immobilization and selectivity enhancement by addition of metal ions or organic (co)solvents are summarised.  相似文献   

6.
Glycine N-methyltransferases (GNMTs) from three mammalian sources were compared with respect to their crystal structures and kinetic parameters. The crystal structure for the rat enzyme was published previously. Human and mouse GNMT were expressed in Escherichia coli in order to determine their crystal structures. Mouse GNMT was crystallized in two crystal forms, a monoclinic form and a tetragonal form. Comparison of the three structures reveals subtle differences, which may relate to the different kinetic properties of the enzymes. The flexible character of several loops surrounding the active site, along with an analysis of the active site boundaries, indicates that the observed conformations of human and mouse GNMTs are more open than that of the rat enzyme. There is an increase in kcat when going from rat to mouse to human, suggesting a correlation with the increased flexibility of some structural elements of the respective enzymes.  相似文献   

7.
The alpha-galactosidase gene aga36A of Clostridium stercorarium F-9 was cloned, sequenced, and expressed in Escherichia coli. The aga36A gene consists of 2,208 nucleotides encoding a protein of 736 amino acids with a predicted molecular weight of 84,786. Aga36A is an enzyme classified in family 36 of the glycoside hydrolases and showed sequence similarity with some enzymes of family 36 such as Geobacillus (formerly Bacillus) stearothermophilus GalA (57%) and AgaN (52%). The enzyme purified from a recombinant E. coli is optimally active at 70 degrees C and pH 6.0. The enzyme hydrolyzed raffinose and guar gum with specific activities of 3.0 U/mg and 0.46 U/mg for the respective substrates.  相似文献   

8.
Catechin and epicatechin biosyntheses were studied of grape (Vitis vinifera L.), apple (Malus x domestica Borkh.) and other crop leaves, since these monomers and the derived proanthocyanidins are important disease resistance factors. Grape and apple leucoanthocyanidin 4-reductase (LAR; EC 1.17.1.3) enzymes were characterized on basis of plant and recombinant enzymes. In case of grape, two LAR cDNAs were cloned by assembling available EST sequences. Grape and apple leaf anthocyanidin reductase (ANR; EC 1.3.1.77) cDNAs were also obtained and the respective plant and recombinant enzymes were characterized. Despite general low substrate specificity, within the respective flavonoid biosyntheses of grape and apple leaves, both enzyme types deliver differently hydroxylated catechins and epicatechins, due to substrate availability in vivo. Furthermore, for LAR enzymes conversion of 3-deoxyleucocyanidin was shown. Beside relevance for plant protection, this restricts the number of possible reaction mechanisms of LAR. ANR enzyme activity was demonstrated for a number of other crop plants and its correlation with (-)-epicatechin and obvious competition with UDP-glycosyl:flavonoid-3-O-glycosyltransferases was considered.  相似文献   

9.
There are two distinct cyclic AMP phosphodiesterases associated with the liver mitochondrion: one with the outer membrane and one with the inner membrane. No activity is associated with the lysosomal fraction. Both of the enzymes are peripheral proteins and can be released from the membranes by high-ionic-strength treatment. Treatment of intact mitochondria with trypsin and insoluble trypsin localizes these enzymes to the cytosol-facing surface of their respective membranes. The enzymes differ in regard to sedimentation coefficient, thermostability and susceptibility to inactivation by trypsin. Both enzymes degrade cyclic AMP and cyclic GMP. Whereas the outer-membrane enzyme displays Michaelis kinetics and appears to be a low-affinity enzyme, the inner-membrane enzyme displays kinetics indicative of apparent negative co-operativity.  相似文献   

10.
The presence of the initial enzymes of the pentose phosphate pathway, namely glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase, has been demonstrated in dormant seed of wild oat. Before a partial characterization of these enzymes was made, an inherent NADP-reducing activity and an enzyme deactivating component, both present in the crude extract, were removed by ammonium sulphate precipitation and subsequent desalting. Both enzymes were then shown to be NADP-specific. Typical Michaelis-Menten kinetics were shown by each enzyme towards NADP and their respective substrates. Soluble cytoplasmic dehydrogenase enzymes were present in both embryo and endosperm extracts.  相似文献   

11.
Pyridoxal kinase is an ATP dependent enzyme that phosphorylates pyridoxal, pyridoxine, and pyridoxamine forming their respective 5'-phosphorylated esters. The kinase is a part of the salvage pathway for re-utilizing pyridoxal 5'-phosphate, which serves as a coenzyme for dozens of enzymes involved in amino acid and sugar metabolism. Clones of two pyridoxal kinases from Escherichia coli and one from human were inserted into a pET 22b plasmid and expressed in E. coli. All three enzymes were purified to near homogeneity and kinetic constants were determined for the three vitamin substrates. Previous studies had suggested that ZnATP was the preferred trinucleotide substrate, but our studies show that under physiological conditions MgATP is the preferred substrate. One of the two E. coli kinases has very low activity for pyridoxal, pyridoxine, and pyridoxamine. We conclude that in vivo this kinase may have an alternate substrate involved in another metabolic pathway and that pyridoxal has only a poor secondary activity for this kinase.  相似文献   

12.
13.
The relationship between conidial enzymes of Penicillium expansum and spore germination was examined. The activities of xylanase and pectinase, but not of cellulase and amylase, were detected in the conidia. The levels of xylanase and pectinase were greatly enhanced by xylan and pectin as respective carbon sources in the basal medium. No conidia germinated in the basal medium without a carbon source. The type of carbon source and the enzyme levels of the conidia did not affect the rate of germination. However, a relationship was found between the enzyme levels and the elongation of the germ tubes.  相似文献   

14.
Deacetoxycephalosporin C synthase (DAOCS) is a non-heme iron-binding and alpha-ketoglutarate dependent enzyme involved in catalyzing the biosynthesis of cephalosporins and cephamycins, antibiotics more potent than penicillins. In the crystal structure complex of Streptomyces clavuligerus DAOCS (scDAOCS), it was proposed that histidine-183, aspartate-185, and histidine-243 are putative iron-binding ligands. However, coordinates proposed for crystal structures of proteins may not definitely comply with catalysis. Hence, site-directed mutagenesis was done to replace each of these amino acid residues with leucine. The constructed expression vectors bearing the mutations were found to express the respective scDAOCS mutant enzymes at high levels in Escherichia coli BL21(DE3). Through enzymatic assays, it was shown that while the wildtype enzyme could convert penicillin to a more active cephalosporin, the substitution of the three proposed iron-binding sites of scDAOCS completely abolished the same activity in the respective mutant enzymes. Thus, these results clearly indicate that histidine-183, aspartate-185, and histidine-243 of scDAOCS are essential for the ring expansion activity.  相似文献   

15.
We demonstrate the feasibility of optical biosensing using a material which, in essence, is a modified inorganic film to which various enzymes were covalently attached. Thin and transparent blue films composed of Prussian blue and incorporated into a network of N-substituted polypyrroles are sensitive to pH in the 5-9 range at 720 nm wavelength and can be modified with enzymes to result in the respective biosensors. Several methods of enzyme immobilization, using bifunctional crosslinking reagents, and various enzymes were tested. The best results were obtained using the one-step carbodiimide method which resulted in highly active, stable and transparent biosensor films for optical determination of urea and acetylcholine. The operational stability exceeded 1 month and even after 2 months of dry storage at room temperature the activity did not drop. The biosensors allow optical determination of the respective substrates in the millimolar concentration range.  相似文献   

16.
Phosphofructokinase (EC 2.7.1.11) and aldolase (EC 4.1.2.13) have been highly purified from Saccharomyces cerevisiae by improved protocols. Partitioning of the enzymes in aqueous polymer two-phase systems was used to detect complex formation. The partition of each enzyme was found to be affected by the presence of the other enzyme. AMP affected the partition of the individual enzymes as well as the mixture of the two. The activities of the respective enzymes were stimulated in the putative complex in an AMP-dependent manner. Two strictly conserved residues belonging to an acidic surface loop of class II aldolases, are a potential site for electrostatic interaction with the positively charged regions close to the active site in phosphofructokinase.  相似文献   

17.
Type II restriction endonucleases Bam HI and Eco RI were covalently coupled to Sepharose. These insolubilized enzymes generated fragment patterns for several viral DNAs identical to those produced by the respective free enzymes. Conditions for optimal activity were similar for both bound and unbound forms of the enzymes. Insolubilization improved thermal stability of Bam HI and Eco RI. The bound enzyme can be recovered from reaction mixtures and reused several times. Upon storage at 4 degrees C, coupled endonucleases remained stable for several months.  相似文献   

18.
To investigate a possible chromosomal clustering of glycolytic enzyme genes in Corynebacterium glutamicum, a 6.4-kb DNA fragment located 5' adjacent to the structural phosphoenolpyruvate carboxylase (PEPCx) gene ppc was isolated. Sequence analysis of the ppc-proximal part of this fragment identified a cluster of three glycolytic genes, namely, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene gap, the 3-phosphoglycerate kinase (PGK) gene pgk, and the triosephosphate isomerase (TPI) gene tpi. The four genes are organized in the order gap-pgk-tpi-ppc and are separated by 215 bp (gap and pgk), 78 bp (pgk and tpi), and 185 bp (tpi and ppc). The predicted gene product of gap consists of 336 amino acids (M(r) of 36,204), that of pgk consists of 403 amino acids (M(r) of 42,654), and that of tpi consists of 259 amino acids (M(r) of 27,198). The amino acid sequences of the three enzymes show up to 62% (GAPDH), 48% (PGK), and 44% (TPI) identity in comparison with respective enzymes from other organisms. The gap, pgk, tpi, and ppc genes were cloned into the C. glutamicum-Escherichia coli shuttle vector pEK0 and introduced into C. glutamicum. Relative to the wild type, the recombinant strains showed up to 20-fold-higher specific activities of the respective enzymes. On the basis of codon usage analysis of gap, pgk, tpi, and previously sequenced genes from C. glutamicum, a codon preference profile for this organism which differs significantly from those of E. coli and Bacillus subtilis is presented.  相似文献   

19.
Tissue-specific (intestinal) and tissue-nonspecific (kidney) rat alkaline phosphatases are released from their respective brush border membranes by different enzymes. To elucidate the mechanism underlying their membrane attachment, we tested the ability of these enzymes to partition into lipid or aqueous phases both before and after treatment with phospholipases and proteases. Interaction with Triton X-114 micelles was eliminated or decreased by treatment of intestinal enzyme with phospholipase A2 or papain, while only phosphatidylinositol (PI)-specific phospholipase C (PIPLC) and subtilisin were effective with the kidney enzyme. Binding to octyl Sepharose for the intestinal enzyme was decreased by phospholipase A2 more than by PIPLC, whereas the reverse was true for the kidney enzyme. Treatment with phospholipases decreased the apparent mass of the phosphatases by 50-80 kDa, presumably due to loss of bound lipid and detergent. PIPLC treatment of the kidney, but not the intestinal enzyme, prevented binding of the phosphatase to phospholipid vesicles. These results show that both enzymes are bound to respective membranes by hydrophobic anchor peptides to which phospholipids are bound. However, their sensitivity to phospholipases is different. The data are consistent with the hypothesis that, in the kidney enzyme, the PI is bound covalently, while with the intestinal enzyme, binding of PI appears to be tight but not covalent.  相似文献   

20.
A mutant strain of Salmonella typhimurium (SL 1634 dml-51) capable of growth on d-malate as sole carbon source was shown to produce d-malic enzyme. This enzyme was absent in the parent wild-type strain which was unable to grow on d-malate. Growth of the mutant on d-malate also resulted in a greatly increased level of beta-isopropylmalic enzyme compared with its level in the wild-type strain grown on citrate or l-malate. The d-malic and beta-isopropylmalic enzymes, both of which catalyze a nicotinamide adenine dinucleotide- and Mg(++)-dependent oxidative decarboxylation of their respective substrates, were shown to be distinct enzymes by selective inhibition with erythro-dl-beta-hydroxyaspartate and by other methods. Cell extracts of the mutant strain also oxidized dl-beta-methyl-, dl-beta-ethyl-, dl-beta-propyl- and dl-betabeta-dimethylmalates, in order of decreasing activity. dl-beta-Methyl-malate was shown to be oxidized by both the d-malic and the beta-isopropylmalic enzymes, whereas the oxidation of the other beta-alkylmalates appeared to be effected exclusively by the beta-isopropylmalic enzyme. beta-Isopropylmalic enzyme activity was induced by d-malate but not by l-malate, showing that it behaved as a d-malictype enzyme. Growth of Aerobacter aerogenes on d-malate, which caused induction of d malic enzyme, resulted in only a small increase in the activity of beta-isopropylmalic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号