首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the border of the neural plate, the induction of the neural crest can be achieved by interactions with the epidermis, or with the underlying mesoderm. Wnt signals are required for the inducing activity of the epidermis in chick and amphibian embryos. Here, we analyze the molecular mechanisms of neural crest induction by the mesoderm in Xenopus embryos. Using a recombination assay, we show that prospective paraxial mesoderm induces a panel of neural crest markers (Slug, FoxD3, Zic5 and Sox9), whereas the future axial mesoderm only induces a subset of these genes. This induction is blocked by a dominant negative (dn) form of FGFR1. However, neither dnFGFR4a nor inhibition of Wnt signaling prevents neural crest induction in this system. Among the FGFs, FGF8 is strongly expressed by the paraxial mesoderm. FGF8 is sufficient to induce the neural crest markers FoxD3, Sox9 and Zic5 transiently in the animal cap assay. In vivo, FGF8 injections also expand the Slug expression domain. This suggests that FGF8 can initiate neural crest formation and cooperates with other DLMZ-derived factors to maintain and complete neural crest induction. In contrast to Wnts, eFGF or bFGF, FGF8 elicits neural crest induction in the absence of mesoderm induction and without a requirement for BMP antagonists. In vivo, it is difficult to dissociate the roles of FGF and WNT factors in mesoderm induction and neural patterning. We show that, in most cases, effects on neural crest formation were parallel to altered mesoderm or neural development. However, neural and neural crest patterning can be dissociated experimentally using different dominant-negative manipulations: while Nfz8 blocks both posterior neural plate formation and neural crest formation, dnFGFR4a blocks neural patterning without blocking neural crest formation. These results suggest that different signal transduction mechanisms may be used in neural crest induction, and anteroposterior neural patterning.  相似文献   

2.
The relative contributions of different FGF ligands and spliceforms to mesodermal and neural patterning in Xenopus have not been determined, and alternative splicing, though common, is a relatively unexplored area in development. We present evidence that FGF8 performs a dual role in X. laevis and X. tropicalis early development. There are two FGF8 spliceforms, FGF8a and FGF8b, which have very different activities. FGF8b is a potent mesoderm inducer, while FGF8a has little effect on the development of mesoderm. When mammalian FGF8 spliceforms are analyzed in X. laevis, the contrast in activity is conserved. Using a loss-of-function approach, we demonstrate that FGF8 is necessary for proper gastrulation and formation of mesoderm and that FGF8b is the predominant FGF8 spliceform involved in early mesoderm development in Xenopus. Furthermore, FGF8 signaling is necessary for proper posterior neural formation; loss of either FGF8a or a reduction in both FGF8a and FGF8b causes a reduction in the hindbrain and spinal cord domains.  相似文献   

3.
4.
We previously showed that FGF was capable of inducing Xenopus gastrula ectoderm cells in culture to express position-specific neural markers along the anteroposterior axis in a dose-dependent manner. However, conflicting results have been obtained concerning involvement of FGF signaling in the anterior neural induction in vivo using the same dominant-negative construct of Xenopus FGF receptor type-1 (delta XFGFR-1 or XFD). We explored this issue by employing a similar construct of receptor type-4a (XFGFR-4a) in addition, since expression of XFGFR-4a was seen to peak between gastrula and neurula stages, when the neural induction and patterning take place, whereas expression of XFGFR-1 had not a distinct peak during that period. Further, these two FGFRs are most distantly related in amino acid sequence in the Xenopus FGFR family. When we injected mRNA of a dominant-negative version of XFGFR-4a (delta XFGFR-4a) into eight animal pole blastomeres at 32-cell stage, anterior defects including loss of normal structure in telencephalon and eye regions became prominent as examined morphologically or by in situ hybridization. Overexpression of delta XFGFR-1 appeared far less effective than that of delta XFGFR-4a. Requirement of FGF signaling in ectoderm for anterior neural development was further confirmed in culture: when ectoderm cells that were overexpressing delta XFGFR-4a were cocultured with intact organizer cells from either early or late gastrula embryos, expression of anterior and posterior neural markers was inhibited, respectively. We also showed that autonomous neuralization of the anterior-type observed in ectoderm cells that were subjected to prolonged dissociation was strongly suppressed by delta XFGFR-4a, but not as much by delta XFGFR-1. It is thus indicated that FGF signaling in ectoderm, mainly through XFGFR-4, is required for the anterior neural induction by organizer. We may reconcile our data to the current "neural default model," which features the central roles of BMP4 signaling in ectoderm and BMP4 antagonists from organizer, simply postulating that the neural default pathway in ectoderm includes constitutive FGF signaling step.  相似文献   

5.
Pax3 and Pax7 paralogous genes have functionally diverged in vertebrate evolution, creating opportunity for a new distribution of roles between the two genes and the evolution of novel functions. Here we focus on the regulation and function of Pax7 in the brain and neural crest of amphibian embryos, which display a different pax7 expression pattern, compared to the other vertebrates already described. Pax7 expression is restricted to the midbrain, hindbrain and anterior spinal cord, and Pax7 activity is important for maintaining the fates of these regions, by restricting otx2 expression anteriorly. In contrast, pax3 displays broader expression along the entire neuraxis and Pax3 function is important for posterior brain patterning without acting on otx2 expression. Moreover, while both genes are essential for neural crest patterning, we show that they do so using two distinct mechanisms: Pax3 acts within the ectoderm which will be induced into neural crest, while Pax7 is essential for the inducing activity of the paraxial mesoderm towards the prospective neural crest.  相似文献   

6.
The homeodomain factors Msx1 and Msx2 are expressed in essentially identical patterns in the epidermis and neural crest of Xenopus embryos during neurula stages. Disruption of Msx1 and Msx2 RNA splicing with antisense morpholino oligonucleotides shows that both factors are also required for expression of the neural crest gene Slug. Loss of Msx1 can be compensated by overexpression of Msx2 and vice versa. Loss of Msx factors also leads to alterations in the expression boundaries for neural and epidermal genes, but does not prevent or reduce expression of epidermal keratin in ventrolateral ectoderm, nor is there a detectable effect on dorsal mesodermal marker gene expression. These results indicate that Msx1 and Msx2 are both essential for neural crest development, but that the two genes have the same function in this tissue. If Msx genes have important functions in epidermis or axial mesoderm induction, these functions must be shared with other regulatory proteins.  相似文献   

7.
8.
9.
10.
A number of regulatory genes have been implicated in neural crest development. However, the molecular mechanism of how neural crest determination is initiated in the exact ectodermal location still remains elusive. Here, we show that the cooperative function of Pax3 and Zic1 determines the neural crest fate in the amphibian ectoderm. Pax3 and Zic1 are expressed in an overlapping manner in the presumptive neural crest area of the Xenopus gastrula, even prior to the onset of the expression of the early bona fide neural crest marker genes Foxd3 and Slug. Misexpression of both Pax3 and Zic1 together efficiently induces ectopic neural crest differentiation in the ventral ectoderm, whereas overexpression of either one of them only expands the expression of neural crest markers within the dorsolateral ectoderm. The induction of neural crest differentiation by Pax3 and Zic1 requires Wnt signaling. Loss-of-function studies in vivo and in the animal cap show that co-presence of Pax3 and Zic1 is essential for the initiation of neural crest differentiation. Thus, co-activation of Pax3 and Zic1, in concert with Wnt, plays a decisive role for early neural crest determination in the correct place of the Xenopus ectoderm.  相似文献   

11.
The neural crest plays a crucial part in cardiac development. Cells of the cardiac subpopulation of cranial neural crest migrate from the hindbrain into the outflow tract of the heart where they contribute to the septum that divides the pulmonary and aortic channels. In Splotch mutant mice, which lack a functional Pax3 gene, migration of cardiac neural crest is deficient and aorticopulmonary septation does not occur. Downstream genes through which Pax3 regulates cardiac neural crest development are unknown. Here, using a combination of genetic and molecular approaches, we show that the deficiency of cardiac neural crest development in the Splotch mutant is caused by upregulation of Msx2, a homeobox gene with a well-documented role as a regulator of BMP signaling. We provide evidence, moreover, that Pax3 represses Msx2 expression via a direct effect on a conserved Pax3 binding site in the Msx2 promoter. These results establish Msx2 as an effector of Pax3 in cardiac neural crest development.  相似文献   

12.
13.
The neural crest is a multipotent, migratory cell population that contributes to a variety of tissues and organs during vertebrate embryogenesis. Here, we focus on the function of Msx1 and Msx2, homeobox genes implicated in several disorders affecting craniofacial development in humans. We show that Msx1/2 mutants exhibit profound deficiencies in the development of structures derived from the cranial and cardiac neural crest. These include hypoplastic and mispatterned cranial ganglia, dysmorphogenesis of pharyngeal arch derivatives and abnormal organization of conotruncal structures in the developing heart. The expression of the neural crest markers Ap-2alpha, Sox10 and cadherin 6 (cdh6) in Msx1/2 mutants revealed an apparent retardation in the migration of subpopulations of preotic and postotic neural crest cells, and a disorganization of neural crest cells paralleling patterning defects in cranial nerves. In addition, normally distinct subpopulations of migrating crest underwent mixing. The expression of the hindbrain markers Krox20 and Epha4 was altered in Msx1/2 mutants, suggesting that defects in neural crest populations may result, in part, from defects in rhombomere identity. Msx1/2 mutants also exhibited increased Bmp4 expression in migratory cranial neural crest and pharyngeal arches. Finally, proliferation of neural crest-derived mesenchyme was unchanged, but the number of apoptotic cells was increased substantially in neural crest-derived cells that contribute to the cranial ganglia and the first pharyngeal arch. This increase in apoptosis may contribute to the mispatterning of the cranial ganglia and the hypoplasia of the first arch.  相似文献   

14.
The Pax3/7 gene family has a fundamental and conserved role during neural crest formation. In people, PAX3 mutation causes Waardenburg syndrome, and murine Pax3 is essential for pigment formation. However, it is unclear exactly how Pax3 functions within the neural crest. Here we show that pax3 is expressed before other pax3/7 members, including duplicated pax3b, pax7 and pax7b genes, early in zebrafish neural crest development. Knockdown of Pax3 protein by antisense morpholino oligonucleotides results in defective fate specification of xanthophores, with complete ablation in the trunk. Other pigment lineages are specified and differentiate. As a consequence of xanthophore loss, expression of pax7, a marker of the xanthophore lineage, is reduced in neural crest. Morpholino knockdown of Pax7 protein shows that Pax7 itself is dispensable for xanthophore fate specification, although yellow pigmentation is reduced. Loss of xanthophores after reduction of Pax3 correlates with a delay in melanoblast differentiation followed by significant increase in melanophores, suggestive of a Pax3-driven fate switch within a chromatophore precursor or stem cell. Analysis of other neural crest derivatives reveals that, in the absence of Pax3, the enteric nervous system is ablated from its inception. Therefore, Pax3 in zebrafish is required for specification of two specific lineages of neural crest, xanthophores and enteric neurons.  相似文献   

15.
16.
17.
The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play and, equally importantly, where disparities in experimental results suggest areas of profitable study.Key words: evolution, neural crest, mesoderm, induction, migration  相似文献   

18.
The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been is critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular, and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play, and equally importantly, where disparities in experimental results suggest areas of profitable study.  相似文献   

19.
In intact Xenopus embryos, an increase in intracellular Ca(2+) in the dorsal ectoderm is both necessary and sufficient to commit the ectoderm to a neural fate. However, the relationship between this Ca(2+) increase and the expression of early neural genes is as yet unknown. In intact embryos, studying the interaction between Ca(2+) signaling and gene expression during neural induction is complicated by the fact that the dorsal ectoderm receives both planar and vertical signals from the mesoderm. The experimental system may be simplified by using Keller open-face explants where vertical signals are eliminated, thus allowing the interaction between planar signals, Ca(2+) transients, and neural induction to be explored. We have imaged Ca(2+) dynamics during neural induction in open-face explants by using aequorin. Planar signals generated by the mesoderm induced localized Ca(2+) transients in groups of cells in the ectoderm. These transients resulted from the activation of L-type Ca(2+) channels. The accumulated Ca(2+) pattern correlated with the expression of the early neural precursor gene, Zic3. When the transients were blocked with pharmacological agents, the level of Zic3 expression was dramatically reduced. These data indicate that, in open-face explants, planar signals reproduce Ca(2+) -signaling patterns similar to those observed in the dorsal ectoderm of intact embryos and that the accumulated effect of the localized Ca(2+) transients over time may play a role in controlling the expression pattern of Zic3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号