首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regions of the visual cortex forming a code invariant to the transformation of pattern size were investigated by the averaged evoked potentials method. The response was assessed by amplitude of the negative wave, whose peak latency was 130±20 msec. A set of strips of light forming a grating was used as the stimulus. The gratings differed from each other in the number of strips or in area. With an increase in stimulus area, the response in area 17 increased, but the responses were identical to gratings of equal area but different orientation of the strips. In area 7 (middle part of the suprasylvian gyrus) response size was unchanged with an increase in area of the grating, whereas an increase in the number of orientations of the strips forming the grating led to an increased response. Since response magnitude is independent of the area of the grating, it is postulated that responses to pattern size invariant to transformation are located in area 7.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 115–121, March–April, 1973.  相似文献   

2.
3.
4.
The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds.  相似文献   

5.
The invariant recognition ability of five- to six-year-old children with typical and atypical patterns of development in terms of the shape of visual images varying in color, size, and location has been studied. It has been shown that the typically developing children of this age are able to identify the invariant form of a visual object regardless of any changes in its color, size, or location. The children with neurodevelopmental disorders have difficulties with identifying the shape of a visual object when its location among a large number of figures is changed. The children with early infantile autism exhibit different degrees of visual perceptual deficit. The children with the milder forms of autistic disorders have difficulties only with recognizing the shape of an image when its location is changed; the children with more severe forms of disorders showed a serious impairment of invariant recognition regardless of image color, size, and location.  相似文献   

6.
In conscious 2-6-day rat puppies, studies have been made on the bioelectrical activity in the visual and sensorimotor cortex. ECG in newborn rat puppies exhibits characteristic intermittence of complexes of the electrical activity with intervals of partial or almost complete absence of the activity in a minute scale. This phenomenon reflects the ancient property of immature nervous system, i.e. a capacity to autogenic periodic excitation. The structure of these complexes may be different, since it reflects the condition of animals at the given moment, the degree of maturation of elements involved in realization of the bioelectrical activity and interrelationship with other parts of the brain. With respect to amplitude-frequency parameters, age dynamics and the relationship to the spontaneous motor activity, four distinct types of complexes were revealed in the ECG of rat puppies during the first week of their postnatal life.  相似文献   

7.
To study the possible pathways along which visual signals reach a visual zone discovered by the writers in the cat frontal cortex in the ventral bank of the cruciate sulcus, horseradish peroxidase was injected into a site previously identified by physiological experiments. Stained neurons were discovered in visual areas of the cortex (lateral suprasylvian and ectosylvian), in the parietal cortex (areas 5 and 7), and also in small numbers in the prefrontal and limbic cortex. Stained neurons were found in the following nuclei in the thalamus: n. medialis dorsalis, intralaminar nuclei (nn. centralis lateralis, paracentralis, centralis medialis), nn. ventralis medialis, anteromedialis, and reuniens. Many stained neurons were found in the claustrum and a few in the substantia grisea centralis in the midbrain. The principal sources of inputs to the cortical area investigated are thus centers of the visual system or parts of the brain directly connected with it.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Brain Institute, All-Union Mental Health Research Center, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 43–49, January–February, 1985.  相似文献   

8.
To reveal the organization and relative magnitude of connections from various parts of the cerebral cortex to the dorsal paraflocculus via the pontine nuclei, WGA-HRP was injected in the dorsal paraflocculus in conjunction with injection of the same tracer in various parts of the cerebral cortex in 17 cats. Termination areas of cortical fibres (anterogradely labelled) and pontine neurons projecting to the dorsal paraflocculus (retrogradely labelled) were carefully plotted in serial transverse sections. As an average of countings in ten cats, 90% of the labelled cells were found in the pontine nuclei contralateral to the injection, and the majority (70%) were located in the rostral half of the nuclei. The highest degree of overlap between anterograde and retrograde labelling was found after injections of the parietal association cortex (areas 5 and 7). In an experiment with double anterograde tracing, it was shown that both area 5 and 7 contribute substantially to the cerebral inputs to the dorsal paraflocculus. High degree of overlap also occurred after injections of several visual cortical areas (areas 17, 18, 19, 20 and the posteromedial lateral suprasylvian visual area, PMLS). Cases with injections restricted to individual visual areas indicate that they all contribute to the parafloccular input. Considerably less overlap occurred after injections of the primary sensorimotor region (SI, MI) and second somatosensory area (SII), while the supplementary motor area, the auditory cortex and gyrus cinguli probably have no or very restricted access to the dorsal paraflocculus. It is concluded that the dorsal paraflocculus has its major cortical input from the parietal association cortex and the visual cortical areas. Since all the various cortical regions studied project to largely different parts of the pontine nuclei, and overlap with neurons projecting to the dorsal paraflocculus takes place at numerous places, it follows that the pontine neurons projecting to the dorsal paraflocculus must consist of many subgroups differing with regard to their cortical input.  相似文献   

9.
Light and electron microscopic studies have been made of the nervous tissue in three parts of the tecto-thalamo-telencephalic visual system--i.e. tectum opticum, nucleus rotundus of thalamus and ectostriatum of telencephalon--of 13-day chick embryos. Neuroblasts and neurones at various stages of differentiation were described together with various types of synaptic and nonsynaptic intercellular contacts in the neuropil of these brain structures. Heterochronous maturation of these parts of the visual system in embryogenesis was noted which reflects the level of their phylogenetic maturity. Being phylogenetically more ancient structures, tectum opticum and nucleus rotundus reveal differentiation earlier than ectostriatum which is phylogenetically younger.  相似文献   

10.
In 1996 Montgomery proposed an ontogenetic shift in the use of visual and non-visual senses in Antarctic notothenioid fishes, with visual dominance in larval fishes giving way to non-visual senses in adults. One prediction of the hypothesis is timing differences in the development of the respective sensory systems, with the visual system expected to develop earlier than the other systems. The volume of certain brain centres can be determined from fixed material and should correlate with sensory development. This study determined the relative volumes of visual and lateral line brain areas, and relative eye size as a function of fish length in Pleuragramma antarcticum.The relative volume of optic tectum was largest in larval fish, exhibiting a negative allometry with growth. The eminentia granularis, and crista cerebellaris (lateral line associated areas) were not recognisable in the smallest larvae; they became differentiated at standard lengths of 10–20 mm and their relative volumes continued to increase over the size range of fish studied (up to 150 mm standard length). Relative eye diameter decreased dramatically over the size range 5–25 mm and then increased such that relative eye diameter doubled over the size range 25–30 mm. A similar, but less extreme, pattern was seen over the size range 30–60 mm. Above 60 mm relative eye diameter increased slightly with size. Our interpretation is that eye growth and somatic growth are on separate trajectories, and the breaks in the relative eye diameter curve result from overwinter periods when somatic growth is static, but the eye continues to grow. These results provide support for the ontogenetic shift hypothesis, and indicate that the timing of the shift probably occurs after the second winter. Received: 22 October 1996 / Accepted: 10 January 1997  相似文献   

11.
The organization of neocortex in the short-tailed opossum ( Monodelphis domestica ) was explored with multiunit microelectrode recordings from middle layers of cortex. Microelectrode maps were subsequently related to the chemoarchitecture of flattened cortical preparations, sectioned parallel to the cortical surface and processed for either cytochrome oxidase (CO) or NADPH-diaphorase (NADPHd) histochemistry. The recordings revealed the presence of at least two systematic representations of the contralateral body surface located in a continuous strip of cortex running from the rhinal sulcus to the medial wall. The primary somatosensory area (S1) was located medially while secondary somatosensory cortex (S2) formed a laterally located mirror image of S1. Auditory cortex was located in lateral cortex at the caudal border of S2, and some electrode penetrations in this area responded to both auditory and somatosensory stimulation. Auditory cortex was outlined by a dark oval visible in flattened brain sections. A large primary visual cortex (V1) was located at the caudal pole of cortex, and also consistently corresponded to a large chemoarchitecturally visible oval. Cortex just rostral and lateral to V1 responded to visual stimulation, while bimodal auditory/visual responses were obtained in an area between V1 and somatosensory cortex. The results are compared with brain organization in other marsupials and with placentals and the evolution of cortical areas in mammals is discussed.  相似文献   

12.
The organization of neocortex in the short-tailed opossum (Monodelphis domestica) was explored with multiunit microelectrode recordings from middle layers of cortex. Microelectrode maps were subsequently related to the chemoarchitecture of flattened cortical preparations, sectioned parallel to the cortical surface and processed for either cytochrome oxidase (CO) or NADPH-diaphorase (NADPHd) histochemistry. The recordings revealed the presence of at least two systematic representations of the contralateral body surface located in a continuous strip of cortex running from the rhinal sulcus to the medial wall. The primary somatosensory area (S1) was located medially while secondary somatosensory cortex (S2) formed a laterally located mirror image of S1. Auditory cortex was located in lateral cortex at the caudal border of S2, and some electrode penetrations in this area responded to both auditory and somatosensory stimulation. Auditory cortex was outlined by a dark oval visible in flattened brain sections. A large primary visual cortex (V1) was located at the caudal pole of cortex, and also consistently corresponded to a large chemoarchitecturally visible oval. Cortex just rostral and lateral to V1 responded to visual stimulation, while bimodal auditory/visual responses were obtained in an area between V1 and somatosensory cortex. The results are compared with brain organization in other marsupials and with placentals and the evolution of cortical areas in mammals is discussed.  相似文献   

13.
The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations. The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision, which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time, from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment.  相似文献   

14.
Using cortico-cortical connection analysis technique, the cat visual area PMLS (the area located on posterior medial wall of the lateral suprasylvian sulcus) retinotopic organization was investigated. A retrograde axonal tracer: horseradish peroxidase (HRP), was injected in the PMLS, and initial neurons were investigated in area 17. It was shown that after HRP injection in PMLS locus, where a central vision field is located, a labelled cell pattern in area 17 corresponded to the L. Palmer et al., 1978, retinotopic map. On the contrary, after HRP injection in PMLS locus, where an upper vision field must be located, as L. Palmer et al., 1978 predicted, initial neurons are visualized in area 17 loci where low visual periphery is displayed: -10 degrees to -60 degrees in vertical meridian and 40 degrees to 80 degrees in horizontal meridian. Such discrepancy in upper and lower visual field representation was also obtained in electrophysiological and topographic investigations by Grant, Shipp, 1991. The data suggest necessity of S. Grant and S. Shipp's retinotopic map use in the cat area PMLS morphofunctional investigation.  相似文献   

15.
将恒定空间分辨率离散序列小波变换(discrete sequence wavelet transform,DSWT)应用于眼底吲哚青绿血管造影(indocyanine green angiography,ICGA)图像的拼接,解决了传统基为2的DSWT会导致分解结果的空间分辨率下降的问题。提出对图像小波分解细节逼近和平滑逼近分别使用加权平均拼接和直接平均拼接进行处理的策略,以得到兼顾视觉效果和保真性的拼接结果。并且针对眼底图像背景光照不一致,提出在小波域进行处理的策略。实验结果表明拼接算法效果良好。  相似文献   

16.
Multiunit microelectrode recording techniques were used to study the location and organization of the third somatosensory area (SIII) in cats. Representations of all major contralateral body parts were found in a small region of cortex along the lateral wing of the ansate sulcus and between the lateral sulcus and the suprasylvian sulcus. The systematic map of the body surface included forepaw and face regions previously identified as parts of SIII. The forepaw representation was generally buried on the rostral bank of the lateral wing of the ansate sulcus. The representations of the face and mystacial vibrissae were largely exposed on the rostral suprasylvian gyrus, but part of the representation of the face was also buried in the lateral wing of the ansate sulcus. Representations of the trunk and hindlimb extended from the suprasylvian gyrus onto the medial bank of the suprasylvian sulcus. We had expected to find these latter body parts in more medial cortex just caudal to the representation of these parts in the first somatosensory area (SI). Instead, neurons in penetrations in cortex caudal to the SI trunk and hindlimb representations were unresponsive to tactile stimulation. The unexpected location of the hindlimb in SIII led us to determine whether the proposed parts of SIII had similar cortical and thalamic connections. Injected anatomical tracers revealed that the representations of both the forelimb and hindlimb were interconnected with SI and a region of the thalamus just dorsal to the ventroposterior nucleus. Similarities in patterns of connections of forelimb and hindlimb portions of SIII supported the conclusion that SHI as presented here is a functional unit of cortex. We conclude that SIII has a somatotopic organization that does not parallel that in SI, and that SIII is not entirely coextensive with either area 5 or area 5a of Hassler and Muhs-Clement (1964).  相似文献   

17.
Variation in ecological selection pressures has been implicated to explain variation in brain size and architecture in fishes, birds and mammals, but little is known in this respect about amphibians. Likewise, the relative importance of constraint vs. mosaic hypotheses of brain evolution in explaining variation in brain size and architecture remains contentious. Using phylogenetic comparative methods, we studied interspecific variation in brain size and size of different brain parts among 43 Chinese anuran frogs and explored how much of this variation was explainable by variation in ecological factors (viz. habitat type, diet and predation risk). We also evaluated which of the two above‐mentioned hypotheses best explains the observed patterns. Although variation in brain size explained on average 80.5% of the variation in size of different brain parts (supporting the constraint hypothesis), none of the three ecological factors were found to explain variation in overall brain size. However, habitat and diet type explained a significant amount of variation in telencephalon size, as well in three composite measures of brain architecture. Likewise, predation risk explained a significant amount of variation in bulbus olfactorius and optic tecta size. Our results show that evolution of anuran brain accommodates features compatible with both constraint (viz. strong allometry among brain parts) and mosaic (viz. independent size changes in response to ecological factors in certain brain parts) models of brain size evolution.  相似文献   

18.
The brain produces an image of the world outside on its own inner world and should by rights record temporal relationships whose sequence reproduces the sequence of events observed. As, however, visual, auditory and somatic sensory impulses reach the brain after latent periods of differing duration, marked phase differences occur. One way of producing linear phase characteristics with latent periods of 100-500 ms is by means of phase shift and time reversal, referred to in more detail later. With this model it can be shown that Libet's hypothesis of "antedating" (Libet et al., 1979) is consistent in itself, that is, that it contains no inner contradictions (Honderich, 1984). Although there is no sure proof that these mechanisms actually exist, there is in fact no other way of achieving linear phase than by phase shift and time reversal. It must therefore to be assumed that they are present in the brain.  相似文献   

19.
A discrete neural net was used for simulation of cross-sensitivity in 40% of neurones of the cat visual cortex' area 17th. It is based on disinhibition of the end-stopping inhibition in receptive field from the side-disinhibitory zone. Highly selective or invariant sensitivity of the simulated neurone in respect to shape and orientation of a cross-like figure was observed under changes of location, size and weight of the receptive field zones. The disinhibitory mechanism seems to be critically involved in the selection of the second-order features of the images in the primary visual cortex.  相似文献   

20.
How are invariant representations of objects formed in the visual cortex? We describe a neurophysiological and computational approach which focusses on a feature hierarchy model in which invariant representations can be built by self-organizing learning based on the statistics of the visual input. The model can use temporal continuity in an associative synaptic learning rule with a short term memory trace, and/or it can use spatial continuity in Continuous Transformation learning. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and in this paper we show also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in for example spatial and object search tasks. The model has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号