共查询到20条相似文献,搜索用时 0 毫秒
1.
The stoichiometry and specificity of lipid-protein interaction, as well as the lipid exchange rates at the protein interface, have been determined from the electron spin resonance spectra of spin-labeled lipids in reconstituted complexes of the mitochondrial ADP-ATP carrier with egg phosphatidylcholine. With the exception of cardiolipin and phosphatidic acid, the lipids studied are found to compete for approximately 50 sites at the intramembranous surface of the protein dimer. This number of first-shell lipid sites is unusually large for a protein of this size. The specificity for the protein is in the order stearic acid approximately phosphatidic acid approximately cardiolipin greater than phosphatidylserine greater than phosphatidylglycerol approximately phosphatidylcholine, with the maximum association constant relative to phosphatidylcholine being approximately 4. The selectivity for anionic lipids was partially screened with increasing ionic strength, but to a lesser extent for cardiolipin and phosphatidic acid than for stearic acid. Only in the case of phosphatidylserine was the selectivity reduced at high ionic strength to a level close to that for phosphatidylcholine. The off rates for lipid exchange at the protein surface were independent of lipid/protein ratio and correlated in a reciprocal fashion with the different lipid selectivities, varying from 5 x 10(6) s-1 for stearic acid at low ionic strength to 2 x 10(7) s-1 for phosphatidylcholine and phosphatidylglycerol. The off rates for cardiolipin were unusually low in comparison with the observed selectivity, and indicated the existence of a special population of sites (ca. 30% of the total) for cardiolipin, at which the exchange rate was very low.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
The temperature dependences of the ESR spectra from different positional isomers of sphingomyelin and of phosphatidylcholine spin-labeled in their acyl chain have been compared in mixed membranes composed of sphingolipids and glycerolipids. The purpose of the study was to identify the possible formation of sphingolipid-rich in-plane membrane domains. The principal mixtures that were studied contained sphingomyelin and the corresponding glycerolipid phosphatidylcholine, both from egg yolk. Other sphingolipids that were investigated were brain cerebrosides and brain gangliosides, in addition to sphingomyelins from brain and milk. The outer hyperfine splittings in the ESR spectra of sphingomyelin and of phosphatidylcholine spin-labeled on C-5 of the acyl chain were consistent with mixing of the sphingolipid and glycerolipid components, in fluid-phase membranes. In the gel phase of egg sphingomyelin and its mixtures with phosphatidylcholine, the outer hyperfine splittings of sphingomyelin spin-labeled at C-14 of the acyl chain of sphingomyelin are smaller than those of the corresponding sn-2 chain spin-labeled phosphatidylcholine. This is in contrast to the situation with sphingomyelin and phosphatidylcholine spin-labeled at C-5, for which the outer hyperfine splitting is always greater for the spin-labeled sphingomyelin. The behavior of the C-14 spin-labels is attributed to a different geometry of the acyl chain attachments of the sphingolipids and glycerolipids that is consistent with their respective crystal structures. The two-component ESR spectra of sphingomyelin and phosphatidylcholine spin-labeled at C-14 of the acyl chain directly demonstrate a broad two-phase region with coexisting gel and fluid domains in sphingolipid mixtures with phosphatidylcholine. Domain formation in membranes composed of sphingolipids and glycerolipids alone is related primarily to the higher chain-melting transition temperature of the sphingolipid component. 相似文献
3.
Mastoparan B (MP-B) is an antimicrobial cationic tetradecapeptide amide isolated from the venom of the hornet Vespa basalis. NMR spectroscopy was used to study the membrane associated structures of MP-B in various model membrane systems such as 120 mM DPC micelles, 200 mM SDS micelles, and 3%(w/v) DMPC/DHPC (1:2) bicelles. In all systems, MP-B has an amphiphilic alpha-helical structure from Lys2 to Leu14. NOESY experiments performed on MP-B in nondeuterated SDS micelles show that protons in the indole ring of Trp9 are in close contact with methylene protons of SDS micelles. T1 relaxation data and NOE data revealed that the bound form of MP-B may be dominant in SDS micelles. The interactions between MP-B and zwitterionic DPC micelles were much weaker than those between MP-B and anionic SDS micelles. By substitution of Trp9 with Ala9, the pore-forming activity of MP-B was decreased dramatically. All of these results imply that strong electrostatic interactions between the positively charged Lys residues in MP-B and the anionic phospholipid head groups must be the primary factor for MP-B binding to the cell membrane. Then, insertion of the indole ring of Trp9 into the membrane, as well as the amphiphilic alpha-helical structures of MP-B may allow MP-B to span the lipid bilayer through the C-terminal portion. These structural features are crucial for the potent antibiotic activities of MP-B. 相似文献
4.
Bilayers of arachidonic acid containing phospholipids studied by 2H and 31P NMR spectroscopy 总被引:2,自引:0,他引:2
The configurational properties and dynamics of the arachidonic acyl chains of phospholipid bilayers have been investigated for the first time by solid-state 2H NMR techniques, with the goal of achieving a better understanding of the biological roles of polyunsaturated phospholipids. Vinyl perdeuterated arachidonic acid (20:4 delta 5,8,11,14-d8) was prepared from eicosatetraynoic acid (ETYA) and was esterified with 1-palmitoyl-sn-glycero-3-phosphocholine to yield 1-palmitoyl-2-vinylperdeuterioarachidonoyl-sn-glycero-3-phosphocho line [(16:0)(20:4-d8)PC]. 31P NMR spectra of aqueous dispersions of (16:0)(20:4-d8)PC as well as 1-perdeuteriopalmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [(per-2H-16:0)(20:4)PC] were characteristic of the lamellar liquid-crystalline state. The dispersions had similar 31P chemical shift anisotropies, with little apparent motional averaging of the lineshapes due to macroscopic reorientation of liposomes or lateral diffusion of phospholipids about their curved surfaces. Comparison to other phosphatidylcholines indicated that both samples comprised the fully hydrated L alpha phase plus excess water. However, the dispersion of (16:0)(20:4-d8)PC yielded relatively narrow powder-type 2H NMR spectra, compared to (per-2H-16:0)(20:4)PC in the liquid-crystalline state. The differences in the 2H NMR powder patterns thus reflect differences in the configurational properties of the polyunsaturated sn-2 arachidonic acyl chain compared to the saturated sn-1 palmitic chain. When the powder-type 2H NMR spectra of the (16:0)(20:4-d8)PC bilayer were dePaked (theta = 0 degrees), they showed three kinds of deuterons upon integration: one with a large splitting (approximately 25-35 kHz), two with intermediate splittings (approximately 10-15 kHz), and the remainder with smaller splittings (approximately 0.3-5 kHz).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
Coexisting domains in the plasma membranes of live cells characterized by spin-label ESR spectroscopy 下载免费PDF全文
Swamy MJ Ciani L Ge M Smith AK Holowka D Baird B Freed JH 《Biophysical journal》2006,90(12):4452-4465
The importance of membrane-based compartmentalization in eukaryotic cell function has become broadly appreciated, and a number of studies indicate that these eukaryotic cell membranes contain coexisting liquid-ordered (L(o)) and liquid-disordered (L(d)) lipid domains. However, the current evidence for such phase separation is indirect, and so far there has been no direct demonstration of differences in the ordering and dynamics for the lipids in these two types of regions or their relative amounts in the plasma membranes of live cells. In this study, we provide direct evidence for the presence of two different types of lipid populations in the plasma membranes of live cells from four different cell lines by electron spin resonance. Analysis of the electron spin resonance spectra recorded over a range of temperatures, from 5 to 37 degrees C, shows that the spin-labeled phospholipids incorporated experience two types of environments, L(o) and L(d), with distinct order parameters and rotational diffusion coefficients but with some differences among the four cell lines. These results suggest that coexistence of lipid domains that differ significantly in their dynamic order in the plasma membrane is a general phenomenon. The L(o) region is found to be a major component in contrast to a model in which small liquid-ordered lipid rafts exist in a 'sea' of disordered lipids. The results on ordering and dynamics for the live cells are also compared with those from model membranes exhibiting coexisting L(o) and L(d) phases. 相似文献
6.
Interaction of phospholipids with the detergent-solubilized ADP/ATP carrier protein as studied by spin-label electron spin resonance 总被引:1,自引:0,他引:1
The interaction of spin-labeled phospholipids with the detergent-solubilized ADP/ATP carrier protein from the inner mitochondrial membrane has been investigated by electron spin resonance spectroscopy. The equilibrium binding of cardiolipin and phosphatidic acid was studied by titration of the protein with spin-labeled phospholipid analogues using a spectral subtraction protocol for the evaluation of the mobile and immobilized lipid portions. This analysis revealed the immobilization of two molecules of spin-labeled cardiolipin per protein dimer. Phosphatidic acid has a similar affinity for the protein surface as cardiolipin. The lipid-protein interaction was less pronounced with the neutral phospholipids and with phosphatidylglycerol. The importance of the electrostatic contribution to the phospholipid-protein interaction shows up with a strong dependence of the lipid binding on salt concentration. Cleavage by phospholipase A2 and spin reduction by ascorbate of the spin-labeled acidic phospholipids in contact with the protein surface suggest that these lipids are located on the outer perimeter of the protein. At reduced detergent concentration, the protein aggregated upon addition of small amounts of cardiolipin but remained solubilized when more cardiolipin was added. This result is discussed with respect to the aggregation state of the protein in the mitochondrial membrane. It is also tentatively concluded that binding of spin-labeled cardiolipin does not displace the tightly bound cardiolipin of mitochondrial origin, which was detected previously by 31P nuclear magnetic resonance spectroscopy. 相似文献
7.
Interactions of water-soluble metalloporphyrins with nucleic acids studied by resonance Raman spectroscopy. 下载免费PDF全文
The resonance Raman spectra of water-soluble porphyrins, M(TMpy-P4) (M = Cu(II), Ni(II) and Co(III] and their mixtures with poly(dG-dC)2, poly(dA-dT)2 and calf thymus and salmon DNAs were measured using a divided rotating cell to determine the magnitudes of frequency shift and intensity variation resulting from M(TMpy-P4)-nucleic acid interactions. Bands II(C beta-H bending, approximately 1100 cm-1) and VIII(C beta-C beta stretch, approximately 1570 cm-1) show a large and small upward shift, respectively, when Cu(TMpy-P4) and Ni(TMpy-P4) are intercalated at the G-C sites. In contrast, these bands show a small upward and downward shift, respectively, when Co(TMpy-P4) is groove-bound at the A-T sites of nucleic acids. Both Bands V (approximately 1260 cm-1) and IX (approximately 1646 cm-1) which originate in the N-methylpyridyl group always show small downward shifts due to coulombic interaction between the N-CH3+ group of TMpy-P4 and the PO2 group of the nucleic acid. 相似文献
8.
L. Phillips F. Separovic B. A. Cornell J. A. Barden C. G. dos Remedios 《European biophysics journal : EBJ》1991,19(3):147-155
Solid-state nuclear magnetic resonance spectroscopy was used to study the motion of 2H and 19F probes attached to the skeletal muscle actin residues Cys-10, Lys-61 and Cys-374. The probe resonances were observed in dried and hydrated G-actin, F-actin and F-actin-myosin subfragment-1 complexes. Restricted motion was exhibited by 19F probes attached to Cys-10 and Cys-374 on actin. The dynamics of probes attached to dry cysteine powder or F-actin were very similar and the binding of myosin had little effect indicating that the local probe environment imposes the major influence on motion in the solid state. Correlation times determined for the solid state probes indicated that they were undergoing some rapid internal motion in both G-actin and F-actin such as domain twisting. The probe size influenced the motion in G-actin and appeared to sense monomer rotation but not in F-actin where segmental mobility and intramonomer co-ordination appeared to dominate. 相似文献
9.
Real-time NMR spectroscopy developed to a generally applicable method to follow protein folding reactions. It combines the access to high resolution data with kinetic experiments allowing very detailed insights into the development of the protein structure during different steps of folding. The present review concentrates mainly on the progress of real-time NMR during the last 5 years. Starting from simple 1D experiments, mainly changes of the chemical shifts and line widths of the resonances have been used to analyze the different states populated during the folding reactions. Today, we have a broad spectrum of 1D, 2D, and even 3D NMR methods focusing on different characteristics of the folding polypeptide chains. More than 20 proteins have been investigated so far by these time-resolved experiments and the main results and conclusions are discussed in this report. Real-time NMR provides comprehensive contributions for joining experiment and theory within the 'new view' of protein folding. 相似文献
10.
Proteins are involved in virtually every biological process and in order to function, it is necessary for these polypeptide chains to fold into the unique, native conformation. This folding process can take place rapidly. NMR line shape analyses and transverse relaxation measurements allow protein folding studies on a microsecond-to-millisecond time scale. Together with an overview of current achievements within this field, we present millisecond protein folding studies by NMR of the cold shock protein CspB from Bacillus subtilis. 相似文献
11.
Selectivity of interaction of phospholipids with bovine spinal cord myelin basic protein studied by spin-label electron spin resonance 总被引:2,自引:0,他引:2
The selectivity of interaction between bovine spinal cord myelin basic protein (MBP) and eight different spin-labeled lipid species in complexes with dimyristoylphosphatidylglycerol (DMPG) and between spin-labeled phosphatidylglycerol and spin-labeled phosphatidylcholine in complexes of MBP with various mixtures of DMPG and dimyristoylphosphatidylcholine (DMPC) has been studied by electron spin resonance (ESR) spectroscopy. In DMPC/DMPG mixtures, the protein binding gradually decreased with increasing mole fraction of DMPC in a nonlinear fashion. The lipid-protein binding assays indicated a preferential binding of the protein to phosphatidylglycerol relative to phosphatidylcholine without complete phase separation of the two lipids. The outer hyperfine splittings (2Amax) of both phosphatidylglycerol and phosphatidylcholine labeled at C-5 of the sn-2 chain (5-PGSL and 5-PCSL, respectively) were monitored in the lipid-protein complexes as a function of the mole fraction of DMPC. The increases in the value of Amax induced on binding of the protein were larger for 5-PGSL than for 5-PCSL, up to 0.25 mole fraction of DMPC. Beyond this mole fraction the spectral perturbations induced by the protein were similar for both lipid labels. The ESR spectra of phosphatidylglycerol and phosphatidylcholine labeled at C-12 of the sn-2 chain were two component in nature, indicating indicating a direct interaction of the protein with the lipid chains, at mole fractions of DMPC up to 0.25. Quantitation of the motionally restricted spin-label population by spectral subtraction again indicated a preferential interaction of the protein with phosphatidylglycerol relative to phosphatidylcholine. Up to DMPC mode fractions of 0.25, the microenvironment of the protein was enriched in DMPG.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
Magnus Jensen Morten Bjerring Niels Chr. Nielsen Willy Nerdal 《Journal of biological inorganic chemistry》2010,15(2):213-223
Cisplatin [cis-diamminedichloridoplatinum(II)] is used in chemotherapy where platinum–DNA adducts initiate tumor cell death. It is possible
that side effects such as neurotoxicity and cellular cisplatin resistance can be due to interaction of cisplatin with lipids
and the phospholipid bilayer. In this study, 13C, 31P, and 15N solid-state NMR spectra of 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) bilayers, POPS bilayers with 10 mol% cisplatin,
and POPS bilayers with 30 mol% cisplatin were acquired. In addition, 15N{31P} rotational echo double resonance spectra of POPS bilayers with 30 mol% cisplatin were acquired. The data demonstrate that
the serine head group of phosphatidylserine binds to the aquated form of cisplatin and that cisplatin release of ammine takes
place. It appears that the cisplatin release of ammine is followed by another cisplatin–POPS complex formation, possibly with
cisplatin binding to one of the oxygen atoms of the POPS phosphate moiety. 相似文献
13.
Several binary and ternary inhibitor and 'dead end' complexes of pig heart lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) were studied by saturation transfer ESR spectroscopy by means of an active NAD analog, spin-labeled at N6. The mobility of the spin-label depends on the nature of small molecules bound at the remote catalytic end of the coenzyme. The spin-label was found to serve as a reporter group monitoring the conformation of the peptide loop that is folded down over the active cleft in crystals of ternary complexes. The data suggest a fluctuation of the loop between open and closed forms in solution. The structure of the inhibitor molecules has been correlated with their ability to stabilize a more closed conformation of the loop. 相似文献
14.
The molecular chaperone Hsp90 plays a crucial role in folding and maturation of regulatory proteins. Key aspects of Hsp90's molecular mechanism and its adenosine-5'-triphosphate (ATP)-controlled active cycle remain elusive. In particular the role of conformational changes during the ATPase cycle and the molecular basis of the interactions with substrate proteins are poorly understood. The dynamic nature of the Hsp90 machine designates nuclear magnetic resonance (NMR) spectroscopy as an attractive method to unravel both the chaperoning mechanism and interaction with partner proteins. NMR is particularly suitable to provide a dynamic picture of protein-protein interactions at atomic resolution. Hsp90 is rather a challenging protein for NMR studies, due to its high molecular weight and its structural flexibility. The recent technologic advances allowed overcoming many of the traditional obstacles. Here, we describe the different approaches that allowed the investigation of Hsp90 using state-of-the-art NMR methods and the results that were obtained. NMR spectroscopy contributed to understanding Hsp90's interaction with the co-chaperones p23, Aha1 and Cdc37. A particular exciting prospect of NMR, however, is the analysis of Hsp90 interaction with substrate proteins. Here, the ability of this method to contribute to the structural characterization of not fully folded proteins becomes crucial. Especially the interaction of Hsp90 with one of its natural clients, the tumour suppressor p53, has been intensively studied by NMR spectroscopy. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90). 相似文献
15.
The 16-kDa proteolipid from the hepatopancreas of Nephrops norvegicus belongs to the class of channel proteins that includes the proton-translocation subunit of the vacuolar ATPases. The membranous 16-kDa protein from Nephrops was covalently spin-labeled on the unique cysteine Cys54, with a nitroxyl maleimide, or on the functionally essential glutamate Glu140, with a nitroxyl analogue of dicyclohexylcarbodiimide (DCCD). The intensities of the saturation transfer ESR spectra are a sensitive indicator of spin-spin interactions that were used to probe the intramembranous structure and assembly of the spin-labeled 16-kDa protein. Spin-lattice relaxation enhancements by aqueous Ni(2+) ions revealed that the spin label on Glu140 is located deeper within the membrane (around C9-C10 of the lipid chains) than is that on Cys54 (located around C5-C6). In double labeling experiments, alleviation of saturation by spin-spin interactions with spin-labeled lipids indicates that spin labels both on Cys54 and on Glu140 are at least partially exposed to the lipid chains. The decrease in saturation transfer ESR intensity observed with increasing spin-labeling level is evidence of oligomeric assembly of the 16-kDa monomers and is consistent with a protein hexamer. These results determine the locations and orientations of transmembrane segments 2 and 4 of the 16-kDa putative 4-helix bundle and put constraints on molecular models for the hexameric assembly in the membrane. In particular, the crucial DCCD-binding site that is essential for proton translocation appears to contact lipid. 相似文献
16.
Leisan F. Galiullina Holger A. Scheidt Daniel Huster Albert Aganov Vladimir Klochkov 《生物化学与生物物理学报:生物膜》2019,1861(3):584-593
Statins are drugs that specifically inhibit the enzyme HMG-CoA reductase and thereby reduce the concentration of low-density lipoprotein cholesterol, which represents a well-established risk factor for the development of atherosclerosis. The results of several clinical trials have shown that there are important intermolecular differences responsible for the broader pharmacologic actions of statins, even beyond HMG-CoA reductase inhibition. According to one hypothesis, the biological effects exerted by these compounds depend on their localization in the cellular membrane. The aim of the current work was to study the interactions of different statins with phospholipid membranes and to investigate their influence on the membrane structure and dynamics using various solid-state NMR techniques. Using 1H NOESY MAS NMR, it was shown that atorvastatin, cerivastatin, fluvastatin, rosuvastatin, and some percentage of pravastatin intercalate the lipid-water interface of POPC membranes to different degrees. Based on cross-relaxation rates, the different average distribution of the individual statins in the bilayer was determined quantitatively. Investigation of the influence of the investigated statins on membrane structure revealed that lovastatin had the least effect on lipid packing and chain order, pravastatin significantly lowered lipid chain order, while the other statins slightly decreased lipid chain order parameters mostly in the middle segments of the phospholipid chains. 相似文献
17.
Electron spin resonance (ESR) spectroscopy using spin-labeled ATP was used to study nucleotide binding to and structural transitions within the multidrug resistance P-glycoprotein, P-gp. Spin-labeled ATP (SL-ATP) with the spin label attached to the ribose, was observed to be an excellent substrate analogue for P-gp. SL-ATP was hydrolyzed in a drug-stimulated fashion at about 14% of the rate for normal ATP and allowed reversible trapping of the enzyme in transition and ground states. Equilibrium binding of a total of two nucleotides per P-gp was observed with a binding affinity of 366 microM in the presence of Mg2+ but in the absence of transport substrates such as verapamil. Binding of SL-ATP to wild-type P-gp in the presence of verapamil resulted in reduction of the protein-bound spin-label moiety, most likely due to a conformational transition within P-gp that positioned cysteines in close proximity to the spin label to allow chemical reduction of the radical. We circumvented this problem by using a mutant of P-gp in which all naturally occurring cysteines were substituted for alanines. Equilibrium binding of SL-ATP to this mutant P-gp resulted in maximum binding of two nucleotides; the binding affinity was 223 microM in the absence and 180 microM in the presence of verapamil. The corresponding ESR spectra of wild-type and Cys-less P-gp in the presence of SL-ATP indicate that a cysteine side chain of P-gp is located close to the ribose of the bound nucleotide. Trapping SL-ATP as an AlF(x)-adduct resulted in ESR spectra that showed strong immobilization of the radical, supporting the formation of a closed conformation of P-gp in its transition state. This study is the first to employ ESR spectroscopy with the use of spin-labeled nucleotide analogues to study P-glycoprotein. The study shows that SL-ATP is an excellent substrate analogue that will allow further exploration of structure and dynamics within the nucleotide binding domains of this important enzyme. 相似文献
18.
Fluorescence titration has been used to determine the binding constant and number of binding sites for the textile triazine dye Procion Yellow HE-3G to lactate dehydrogenase from rabbit muscle (E.C. 1.1.1.27). Triazine dye was either free in solution or attached to one of the polymer carriers, polyethylene glycol or dextran. Titrations were performed in solutions of buffer, dextran, and polyethylene glycol. Aqueous two-phase systems composed of polyethylene glycol and dextran were prepared and the binding constant and number of binding sites for ligand polyethylene glycol-Procion Yellow to lactate dehydrogenase were determined in both upper and lower phases of these systems. Affinity partition of lactate dehydrogenase in a PEG-dextran system was also performed using PEG-Procion Yellow as ligand, and partition coefficients of lactate dehydrogenase showed good agreement with theoretical partition coefficients calculated from the binding constant and number of binding sites obtained from fluorescence titration. The advantage of using fluorescence titration to determine affinity of a polymer ligand for a protein is that measurement of binding strength can be made in the actual environment encountered by protein-ligand complex during the purification process. 相似文献
19.
Anselmi M Eliseo T Zanetti-Polzi L Fullone MR Fogliano V Di Nola A Paci M Grgurina I 《Biochimica et biophysica acta》2011,1808(9):2102-2110
Syringomycin E (SRE) is a member of a family of lipodepsipeptides that characterize the secondary metabolism of the plant-associated bacteria Pseudomonas syringae pv. syringae. It displays phytotoxic, antifungal and haemolytic activities, due to the membrane interaction and ion channel formation. To gain an insight into the conformation of SRE in the membrane environment, we studied the conformation of SRE bound to SDS micelle, a suitable model for the membrane-bound SRE. In fact, highly similar circular dichroism (CD) spectra were obtained for SRE bound to sodium dodecylsulphate (SDS) and to a phospholipid bilayer, indicating the conformational equivalence of SRE in these two media, at difference with the CD spectrum of SRE in water solution. The structure of SDS-bound SRE was determined by NMR spectroscopy combined with molecular dynamics calculations in octane environment. The results of this study highlight the influence of the interaction with lipids in determining the three-dimensional structure of SRE and provide the basis for further investigations on structural determinants of syringomycin E-membrane interaction. 相似文献
20.
Biologically important protein complexes often involve molecular interactions that are low affinity or transient. We apply pulsed dipolar electron spin resonance spectroscopy and site-directed spin labeling in what to our knowledge is a new approach to study aggregation and to identify regions on protein surfaces that participate in weak, but specific molecular interactions. As a test case, we have probed the self-association of the chemotaxis kinase CheA, which forms signaling clusters with chemoreceptors and the coupling protein CheW at the poles of bacterial cells. By measuring the intermolecular dipolar interactions sensed by spin-labels distributed over the protein surface, we show that the soluble CheA kinase aggregates to a small extent through interactions mediated by its regulatory (P5) domain. Direct dipolar distance measurements confirm that a hydrophobic surface at the periphery of P5 subdomain 2 associates CheA dimers in solution. This result is further supported by differential disulfide cross-linking from engineered cysteine reporter sites. We suggest that the periphery of P5 is an interaction site on CheA for other similar hydrophobic surfaces and plays an important role in structuring the signaling particle. 相似文献