首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
卵子发生是生殖发育中的重要过程,涉及卵母细胞的发育和成熟,对雌性生殖健康和种群遗传多样性具有重要影响。卵子发生涉及复杂而精准的基因调控过程。核糖核酸(ribonucleic acid, RNA)修饰是在RNA分子中添加化学修饰基团的过程,通过该修饰能够调控RNA的功能和稳定性, RNA修饰在生殖及发育生物学中起着关键的作用。该综述将对近期关于RNA修饰与卵子发生的研究进展进行综述和展望,重点阐述RNA修饰调节信使核糖核酸(messenger RNA, mRNA)转录翻译过程、染色质开放水平、组蛋白修饰以及可变剪切等的机制,及其对卵子发生及胚胎发育过程的影响,以完善RNA表观修饰调控生殖发育的理论研究。  相似文献   

2.
哺乳动物的雌性生殖道包括输卵管、子宫、宫颈和阴道,是卵子受精、早期胚胎发育、胚胎着床、孕体发育和分娩等的重要路径,对于哺乳动物的生殖非常重要.雌性生殖器官的发育异常和病变将导致妊娠失败和胎儿死亡,因而了解雌性生殖道的发育过程和分子调节机制有利于理解生殖相关疾病和改善雌性生殖力.目前,利用基因敲除小鼠等多种实验技术,人们发现了调节雌性生殖道发育和导致生殖道疾病的部分关键基因和调节机理,本文将总结近年来雌性生殖道的发育分子调控机制方面的研究进展,并阐述多种信号通路在生殖道发育过程中的交叉调节网络.  相似文献   

3.
卵巢是雌性哺乳动物的生殖器官,担负着产生成熟卵子和分泌性激素的功能。卵巢的功能调控涉及细胞生长和分化相关基因的有序激活和抑制。近年研究发现组蛋白翻译后修饰因可影响DNA复制、损伤修复及基因转录活性,且一些调节组蛋白修饰的酶为转录因子相关的共激活因子或共抑制因子,在卵巢功能调控和相关疾病发生和发展中起重要作用。本文以卵泡发育和性激素分泌与作用的机制为主线,概括常见组蛋白修饰(主要是乙酰化和甲基化)在生殖周期中的动态变化规律及其对重要分子事件的基因表达调控,如组蛋白乙酰化的特殊动态变化对卵母细胞减数分裂的阻滞与恢复意义重大,而组蛋白(尤其是H3K4)甲基化通过调控卵母细胞的染色质转录活性与减数分裂进程影响其成熟,排卵前组蛋白乙酰化或甲基化亦可促进类固醇激素的合成与分泌等。最后简述了异常组蛋白翻译后修饰在两种常见卵泡发育障碍性疾病(早发性卵巢功能不全、多囊卵巢综合征)发生和发展中的作用。本综述将为理解卵巢功能的复杂调控机制和探索相关疾病的潜在治疗靶点提供有益参考。  相似文献   

4.
鱼精蛋白(protamine,PRM)是精细胞中主要的核蛋白,存在于精子头部,对精子DNA的正确包裹和精子正常功能的维持至关重要。近年研究表明,PRM主要存在PRM1、PRM2、PRM3等3种基因,它们的变异是引发精子生物学异常的重要原因,因此,PRM基因可作为候选基因阐述相关雄性先天性不育的病因。主要阐述PRM的进化和功能及在DNA、RNA和蛋白质水平上PRM与雄性不育的关系,为了解雄性生殖疾病的发生提供理论依据。  相似文献   

5.
长非编码RNA     
人类基因组序列的约5%~10%被稳定转录,蛋白质编码基因仅约占1%,其余4%~9%的序列虽能转录,但转录物功能尚不明确。尽管如此,已确证在非蛋白质编码转录物中,含有具备调节功能的非编码RNA(noncoding RNA,ncRNA)。与具有调节功能的短链非编码RNA[如微RNA(microRNA)、小干扰RNA(siRNA),、Piwi-RNA]相比,长非编码RNA(long noncoding RNA,lncRNA)在数量上占大多数。lncRNA通过多种方式产生,以多种途径调节靶基因表达,参与调控生物体生长、发育、衰老、死亡等过程;lncRNA功能异常往往导致疾病发生。本文综述了lncRNA的起源、分类、作用分子机制及lncRNA异常与疾病的相关性等内容,旨在充分了解这一重要新型调控分子。  相似文献   

6.
1.性冲突和性进化动物生殖细胞的大小有很大区别。雄性的生殖细胞——精子小而多,雌性的生殖细胞——卵子大且营养丰富,数量比精子少得多。所以在生殖过程的初始,两性的生殖投资即相差甚远,然而收获却相等——下一代身上雄雌两性的基因含量永远是相等的。雌雄动物的繁殖策略(最大可能地繁殖下一代)也相应地不同:雄性动物是通过与更多的雌性交配;而雌性动物则通过更快地产卵或幼仔。出于交配的需要引起的同性(往往是雄性)  相似文献   

7.
减数分裂后, 圆形精子细胞经过一系列变态过程最终发育为成熟精子。期间, 精子细胞质逐渐丢失, 其染色质组蛋白逐渐经过渡蛋白替换为鱼精蛋白, 染色质被致密包装并高度浓缩。很多学者认为, 精子转录活性被关闭, 不存在RNA。但近些年却在精子中检测到了种类繁多的转录本, 包括精子染色质重新包装所需蛋白的转录本及一些小分子RNA等。由于精子核内组蛋白没有完全被鱼精蛋白替换, 且染色质上包含一些核酸活性敏感位点, 推测精子存在一定的转录活性, 并通过激素和表观遗传修饰等调控转录。精子中的这些RNA一部分是精子形成过程中残留下来的, 另一部分是精子细胞适时表达的。深入研究精子形成中的基因转录表达, 可增进对精子形成与成熟遗传本质的理解, 为高效利用雄性配子进行生殖控制提供理论依据。文章综述了近年来精子形成期基因转录表达的研究进展, 并提出了未来的研究方向。  相似文献   

8.
鲸类繁殖生物学的研究概况   总被引:2,自引:0,他引:2  
生殖是生物繁殖自身的能力,生殖过程包括生殖细胞(精子与卵子)的生成与成熟、受精过程、妊娠、胎儿的发育、分娩等环节。    相似文献   

9.
RNA干扰技术的原理与应用   总被引:6,自引:0,他引:6  
RNA干扰(RNA interference,RNAi)是由双链RNA(double-stranded RNA,dsRNA)所引起的序列特异性基因沉默,是真核生物中一种非常保守的机制,它与协同抑制(cosuppression)、转座子沉默(transposon silencing)以及发育等许多重要的生物学过程密切相关。RNA干扰依赖于小干扰RNA(Small interference RNA,siRNA)与靶序列之间严格的碱基配对,具有很强的特异性,涉及众多基因和蛋白复合物,构成了一个以小RNA为核心的真核基因表达调控系统,它可以在染色质水平、转录水平、转录后水平和翻译水平参与基因表达的调节。RNA干扰技术为人们迅速、准确的剖析基因的功能,分析基因之间错综复杂的联系和相互作用提供了极为有用的工具,同时也为人们预防和治疗癌症和病毒疾病提供了新的思路。  相似文献   

10.
Dicer基因   总被引:2,自引:0,他引:2  
Dicer编码RNaseⅢ家族,是一进化保守基因。它包含四个ORF框架:DExH/DEAH盒解旋酶,PAZ,两个RNaseⅢ催化区与双链RNA结合区DS-RBD。目前发现Dicer在RNA干扰以及异时发育中起重要作用,它可以切割长的双链RNA成长度为22nt左右的小干扰RNA-siRNA,异时基因stRNA的成熟也与需要Dicer的参与。Dicer行使切割功能需要RDE-1或其同源基因ALG1/ALG2的协同。随着研究的深入,Dicer的其它生物功能将进一步被发现。  相似文献   

11.
The ribonuclease III enzymes Drosha and Dicer are renowned for their central roles in the biogenesis of microRNAs (miRNAs). For many years, this has overshadowed the true versatility and importance of these enzymes in the processing of other RNA substrates. For example, Drosha also recognizes and cleaves messenger RNAs (mRNAs), and potentially ribosomal RNA. The cleavage of mRNAs occurs via recognition of secondary stem-loop structures similar to miRNA precursors, and is an important mechanism of repressing gene expression, particularly in progenitor/stem cell populations. On the other hand, Dicer also has critical roles in genome regulation and surveillance. These include the production of endogenous small interfering RNAs from many sources, and the degradation of potentially harmful short interspersed element and viral RNAs. These findings have sparked a renewed interest in these enzymes, and their diverse functions in biology.  相似文献   

12.
Despite the increasing interest in other classes of small RNAs, microRNAs (miRNAs) remain the most widely investigated and have been shown to play a role in a number of different processes in mammals. Many studies investigating miRNA function focus on the processing enzyme Dicer1, which is an RNAseIII protein essential for the biogenesis of active miRNAs through its cleavage of precursor RNA molecules. General deletion of Dicer1 in the mouse confirms that miRNAs are essential for development because embryos lacking Dicer1 fail to reach the end of gastrulation. Here we investigate the role of Dicer1 in urogenital tract development. We utilised a conditional allele of the Dicer1 gene and two Cre-expressing lines, driven by HoxB7 and Amhr2, to investigate the effect of Dicer1 deletion on both male and female reproductive tract development. Data presented here highlight an essential role for Dicer1 in the correct morphogenesis and function of the female reproductive tract and confirm recent findings that suggest Dicer1 is required for female fertility. In addition, HoxB7:Cre-mediated deletion in ureteric bud derivatives leads to a spectrum of anomalies in both males and females, including hydronephrotic kidneys and kidney parenchymal cysts. Male reproductive tract development, however, remains largely unaffected in the absence of Dicer1. Thus, Dicer1 is required for development of the female reproductive tract and also normal kidney morphogenesis.  相似文献   

13.
14.
Noncanonical microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs) are distinct subclasses of small RNAs that bypass the DGCR8/DROSHA Microprocessor but still require DICER1 for their biogenesis. What role, if any, they have in mammals remains unknown. To identify potential functional properties for these subclasses, we compared the phenotypes resulting from conditional deletion of Dgcr8 versus Dicer1 in post-mitotic neurons. The loss of Dicer1 resulted in an earlier lethality, more severe structural abnormalities, and increased apoptosis relative to that from Dgcr8 loss. Deep sequencing of small RNAs from the hippocampus and cortex of the conditional knockouts and control littermates identified multiple noncanonical microRNAs that were expressed at high levels in the brain relative to other tissues, including mirtrons and H/ACA snoRNA-derived small RNAs. In contrast, we found no evidence for endo-siRNAs in the brain. Taken together, our findings provide evidence for a diverse population of highly expressed noncanonical miRNAs that together are likely to play important functional roles in post-mitotic neurons.  相似文献   

15.
Xue Z  Yuan H  Guo J  Liu Y 《Molecular cell》2012,46(3):299-310
Argonaute proteins are required for the biogenesis of some small RNAs (sRNAs), including the PIWI-interacting RNAs and some microRNAs. How Argonautes mediate maturation of sRNAs independent of their slicer activity is not clear. The maturation of the Neurospora microRNA-like sRNA, milR-1, requires the Argonaute protein QDE-2, Dicer, and QIP. Here, we reconstitute this Argonaute-dependent sRNA biogenesis pathway in vitro and discover that the RNA exosome is also required for milR-1 production. Our results demonstrate that QDE-2 mediates milR-1 maturation by recruiting exosome and QIP and by determining the size of milR-1. The exonuclease QIP first separates the QDE-2-bound pre-milR-1 duplex and then mediates 3' to 5' trimming and maturation of pre-milRNA together with exosome using a handover mechanism. In addition, exosome is also important for the decay of sRNAs. Together, our results establish a biochemical mechanism of an Argonaute-dependent sRNA biogenesis pathway and critical roles of exosome in sRNA processing.  相似文献   

16.
MicroRNAs are prevalent regulators of gene expression, controlling most of the proteome in multicellular organisms. To generate the functional small RNAs, precise processing steps are required. In animals, microRNA biogenesis is initiated by Microprocessor that minimally consists of the Drosha enzyme and its partner, DGCR8. This first step is critical for selecting primary microRNAs, and many RNA-binding proteins and regulatory pathways target both the accuracy and efficiency of microRNA maturation. Structures of Drosha and DGCR8 in complex with primary microRNAs elucidate how RNA structural features rather than sequence provide the framework for substrate recognition. Comparing multiple states of Microprocessor and the closely related Dicer homologs shed light on the dynamic protein-RNA complex assembly and disassembly required to recognize RNAs with diverse sequences via common structural features.  相似文献   

17.
18.
19.
20.
In Drosophila, three types of endogenous small RNAs—microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and endogenous small-interfering RNAs (endo-siRNAs or esiRNAs)—function as triggers in RNA silencing. Although piRNAs are produced independently of Dicer, miRNA and esiRNA biogenesis pathways require Dicer1 and Dicer2, respectively. Recent studies have shown that among the four isoforms of Loquacious (Loqs), Loqs-PB and Loqs-PD are involved in miRNA and esiRNA processing pathways, respectively. However, how these Loqs isoforms function in their respective small RNA biogenesis pathways remains elusive. Here, we show that Loqs-PD associates specifically with Dicer2 through its C-terminal domain. The Dicer2–Loqs-PD complex contains R2D2, another known Dicer2 partner, and excises both exogenous siRNAs and esiRNAs from their corresponding precursors in vitro. However, Loqs-PD, but not R2D2, enhanced Dicer2 activity. The Dicer2–Loqs-PD complex processes esiRNA precursor hairpins with long stems, which results in the production of AGO2-associated small RNAs. Interestingly, however, small RNAs derived from terminal hairpins of esiRNA precursors are loaded onto AGO1; thus, they are classified as a new subset of miRNAs. These results suggest that the precursor RNA structure determines the biogenesis mechanism of esiRNAs and miRNAs, thereby implicating hairpin structures with long stems as intermediates in the evolution of Drosophila miRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号