首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
非同源末端连接(nonhomologous end joining, NHEJ)是动物基因组DNA双链断裂(double-strand break, DSB)修复的优选途径,通过与同源重组(homologous recombination, HR)竞争DSB靶点,进而抑制HR的效率。为提高HR效率,本研究针对猪NHEJ通路修复关键因子PNKP、LIG4和NHEJ1的编码序列,设计并合成相应的靶向小干扰RNA (small interfering RNA, siRNA),组成若干对RNAi (RNA interference)系统,将RNAi系统与报告质粒SSA-GFP reporter、HDR -GFP system和ssODN-GFP system共转染至猪胎儿成纤维细胞(porcine fetal fibroblasts, PFFs),检测敲低上述NHEJ关键修复因子后对HR的影响。RNAi结果显示,针对PNKPLIG4NHEJ1设计的siRNA均可显著敲低PNKPLIG4NHEJ1基因的表达(P<0.05)。选择干扰效果最好的siRNA与报告载体共转染PFFs,结果表明干扰PNKP基因表达后可显著提高单链退火(single strand annealing, SSA)修复效率、双链或单链DNA介导的同源重组定向修复(homology-directed repair, HDR)效率分别为55.7%、37.4%和73.1% (P<0.05),而干扰LIG4NHEJ1分别提高双链和单链介导的HDR效率为37.5% 和 76.9% (P<0.05)。  相似文献   

2.
利用斑马鱼作为体内模型, 研究旨在提高斑马鱼原始生殖细胞(Primordial germ cells, PGCs)中同源重组(Homologous recombination, HR)的效率。首先, 将UAS:mRFP-nos1载体显微注射到Tg (kop:KalTA4) 转基因胚胎中标记转基因PGCs, 结果表明筛选PGCs特异表达mRFP的胚胎能够相对提高转基因的生殖系传递效率。随后建立了PGCs中HR效率的评估体系, 并且证明抑制DNA ligase IV(Lig4)和Xrcc6(曾用名Ku70)的活性不但在全胚胎水平, 而且在PGCs水平都能够显著提高HR的效率。研究表明Tg (kop:KalTA4) 转基因品系是开展HR介导的基因打靶的一个有效平台。    相似文献   

3.
DNA双链断裂(DSBs)是严重的DNA损伤形式之一,生物体对DSBs的修复可通过同源重组(HR)或非同源末端连接途径(NHEJ)进行。长期以来,人们普遍认为HR是细菌DSBs修复的惟一途径,但在分支杆菌和其它原核生物体内NHEJ途径的发现,使这一观念得以颠覆。最近的研究表明,细菌NHEJ修复系统是一个双组分系统,包含一个多功能的DNA连接酶(LigD)和DNA末端结合蛋白Ku,具有DSBs修复所需的断裂末段识别、末端加工和连接活性。重点综述细菌NHEJ修复系统的组成、结构以及生理功能。  相似文献   

4.
利用斑马鱼作为体内模型,研究旨在提高斑马鱼原始生殖细胞(Primordial germ cells,PGCs)中同源重组(Homologous recombination,HR)的效率。首先,将UAS:m RFP-nos1载体显微注射到Tg(kop:Kal TA4)转基因胚胎中标记转基因PGCs,结果表明筛选PGCs特异表达m RFP的胚胎能够相对提高转基因的生殖系传递效率。随后建立了PGCs中HR效率的评估体系,并且证明抑制DNA ligase IV(Lig4)和Xrcc6(曾用名Ku70)的活性不但在全胚胎水平,而且在PGCs水平都能够显著提高HR的效率。研究表明Tg(kop:Kal TA4)转基因品系是开展HR介导的基因打靶的一个有效平台。  相似文献   

5.
DNA双链断裂修复与重症联合免疫缺陷   总被引:1,自引:0,他引:1  
Wang KY  Zhao YH  Li WG 《生理科学进展》2008,39(2):182-184
DNA双链断裂(double-strand breaks, DSBs)是细胞DNA损伤的主要类型,它的修复通过同源重组(HR)和非同源末端连接(NHEJ)两种机制实现.NHEJ是人和哺乳动物细胞DSBs修复的重要通路,主要由DNA依赖性蛋白激酶(DNA-PK)、X射线修复交叉互补蛋白4(XRCC4)、DNA连接酶Ⅳ、Artemis、XLF/Cernunnos和其它DNA损伤修复辅助因子组成.本文重点介绍了NHEJ机制主要成分的特性及其功能,以及这些组分的基因发生突变或缺失所引起的DSBs修复缺陷与辐射敏感性重症联合免疫缺陷(radiosensitive severe combined immunodeficiencies, RS-SCIDs).  相似文献   

6.
基因组编辑技术可以对DNA或RNA进行精准改造,极大地促进了生命科学的发展。CRISPR/Cas9系统在靶位点诱导DNA发生双链或单链损伤,细胞对损伤部位采用无供体模板的非同源末端连接(non-homologous end joining,NHEJ)或有供体模板的同源重组(homologous recombination,HR)修复。基于HR的基因组编辑策略通常被用于获得DNA的精准改造,而NHEJ在动物DNA损伤修复中起主导作用。为了提升HR效率,研究人员设计了多种方案,包括CRISPR/Cas9系统优化和DNA修复通路调控等。从DNA损伤修复途径、Cas9变体选择、sgRNA设计、供体模板设计、DNA修复途径相关蛋白功能调控、供体模板募集效率提升、细胞周期调控及编辑细胞生存效率提升等方面详细综述了相关研究成果,发现尚未开发出放之四海而皆准的HR提升策略,基于HR的基因组编辑需要针对具体案例制定个体化策略。旨在为动物基因组编辑中提升CRISPR/Cas9介导的HR效率研究提供理论参考,为动物基因功能分析、基因治疗和经济动物基因编辑育种提供帮助。  相似文献   

7.
DNA双链断裂的非同源末端连接修复   总被引:1,自引:0,他引:1  
严振鑫  徐冬一 《生命科学》2014,(11):1157-1165
细胞内普遍存在的DNA双链断裂(DSB)可通过同源重组(HR)或非同源末端连接(NHEJ)修复。由于HR仅在存在相同染色体作为模板的时候进行,因此,NHEJ通常为主要的修复方式。在NHEJ中,DSB末端首先由Ku识别,接着由核酸酶、聚合酶在Ku与DNA-PKcs协助下加工,并由连接酶IVXRCC4-XLF连接。NHEJ底物类型多样,末端的修复常包含反复加工的过程,导致修复产物通常无法复原损伤前的序列。虽然无法确保准确修复DNA,NHEJ仍对维持基因组的稳定性具有重要的意义。对NHEJ的研究有助于理解癌症的发生机制并将促进癌症的治疗。  相似文献   

8.
ku基因介导的非同源末端连接(NHEJ)途径是DNA双链断裂(DSBs)的一种修复机制,它不依赖于同源重组,且通过与之竞争而削弱同源重组。由于ku基因在生物进化过程中的高度保守性,其功能在很多微生物中已经得到研究,尤其在丝状真菌中,将ku基因敲除,在NHEJ途径缺陷的背景下,同源重组发挥主要作用,基因敲除的频率大为提高,从而方便了对基因功能的研究。  相似文献   

9.
扩增人肝细胞再生增强因子(human augmenter of liver regeneration,ALR)基因,利用质粒pIRES2-EGFP 构建新霉素(Neo)、增强绿色荧光蛋白(enhanced green fluorescence protein,EGFP)双标记基因且EGFP和ALR基因为双顺反子的真核表达载体.LipofectAMINETM介导其转染体外培养的绵羊胎儿成纤维细胞(sheep fetal fibroblast cells,sFFCs);经G418筛选转基因细胞;激光共聚焦显微镜挑选绿色荧光单克隆细胞.PCR、RT-PCR和免疫组织化学方法进一步检测ALR基因及其表达;稳定表达外源基因的sFFCs作供体,移入去核的绵羊卵母细胞中,进行体细胞核移植.通过激光共聚焦显微镜和ALR抗体检测EGFP、ALR基因在胚胎水平上的表达,其结果表明:由IRES连接的EGFP和ALR基因可在绵羊胎儿成纤维细胞内同时表达,由此细胞核移植产生的转基因胚胎在发育的各阶段均可见绿色荧光;囊胚中所有细胞表达EGFP基因;发绿色荧光的胚胎中ALR基因同时存在.因此,由IRES连接标记基因和目的基因,以标记基因指示目的基因的表达,可简化检测目的基因的繁琐手段;用筛选的转基因早期胚胎进行移植,可提高制备转基因动物的效率.  相似文献   

10.
本研究旨在利用单碱基编辑系统(single base editing system)实现欧拉藏绵羊成纤维细胞FecB和GDF9基因靶位点A到G和C到T的碱基替换并检测其编辑效率。首先设计合成靶向欧拉藏绵羊FecB和GDF9基因的sgRNA序列,再分别连接至epi-ABEmax、epi-BE4max质粒,构建载体并电转至欧拉藏绵羊成纤维细胞,最后对阳性细胞FecB和GDF9基因进行Sanger测序鉴定靶位点突变结果,并通过T-A克隆估算单碱基编辑系统的编辑效率。结果显示获得了靶向欧拉藏绵羊FecB和GDF9基因的sgRNA,并构建使欧拉藏绵羊FecB和GDF9基因单碱基突变的载体,FecB基因靶位点编辑效率为39.13%,GDF9基因靶位点(G260、G721、G1184)编辑效率分别为10.52%、26.67%和8.00%。本研究运用单碱基编辑系统在欧拉藏绵羊成纤维细胞上实现了FecB和GDF9基因靶位点突变,为改良欧拉藏绵羊一胎多羔的繁殖性状奠定理论基础。  相似文献   

11.
This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in the time-interval 0.5–24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, γ-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of γ-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PK-deficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of γ-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.  相似文献   

12.
DNA Ligase IV has a crucial role in double-strand break (DSB) repair through nonhomologous end joining (NHEJ). Most notably, its inactivation leads to embryonic lethality in mammals. To elucidate the role of DNA Ligase IV (Lig4) in DSB repair in a multicellular lower eukaryote, we generated viable Lig4-deficient Drosophila strains by P-element-mediated mutagenesis. Embryos and larvae of mutant lines are hypersensitive to ionizing radiation but hardly so to methyl methanesulfonate (MMS) or the crosslinking agent cis-diamminedichloroplatinum (cisDDP). To determine the relative contribution of NHEJ and homologous recombination (HR) in Drosophila, Lig4; Rad54 double-mutant flies were generated. Survival studies demonstrated that both HR and NHEJ have a major role in DSB repair. The synergistic increase in sensitivity seen in the double mutant, in comparison with both single mutants, indicates that both pathways partially overlap. However, during the very first hours after fertilization NHEJ has a minor role in DSB repair after exposure to ionizing radiation. Throughout the first stages of embryogenesis of the fly, HR is the predominant pathway in DSB repair. At late stages of development NHEJ also becomes less important. The residual survival of double mutants after irradiation strongly suggests the existence of a third pathway for the repair of DSBs in Drosophila.  相似文献   

13.
Non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSBs) is mediated by two protein complexes comprising Ku80/Ku70/DNA-PKcs/Artemis and XRCC4/LigaseIV/XLF. Loss of Ku or XRCC4/LigaseIV function compromises the rejoining of radiation-induced DSBs and leads to defective V(D)J recombination. In this study, we sought to define how XRCC4 and Ku80 affect NHEJ of site-directed chromosomal DSBs in murine fibroblasts. We employed a recently developed reporter system based on the rejoining of I-SceI endonuclease-induced DSBs. We found that the frequency of NHEJ was reduced by more than 20-fold in XRCC4−/− compared to XRCC4+/+ cells, while a Ku80 knock-out reduced the rejoining efficiency by only 1.4-fold. In contrast, lack of either XRCC4 or Ku80 increased end degradation and shifted repair towards a mode that used longer terminal microhomologies for rejoining. However, both proteins proved to be essential for the repair of radiation-induced DSBs. The remarkably different phenotype of XRCC4- and Ku80-deficient cells with regard to the repair of enzyme-induced DSBs mirrors the embryonic lethality of XRCC4 knock-out mice as opposed to the viability of the Ku80 knock-out. Thus, I-SceI-induced breaks may resemble DSBs arising during normal DNA metabolism and mouse development. The removal of these breaks likely has different genetic requirements than the repair of radiation-induced DSBs.  相似文献   

14.
Site-specific double-strand breaks (DSBs) were generated in the white gene located on the X chromosome of Drosophila by excision of the w(hd) P-element. To investigate the role of nonhomologous end joining (NHEJ) and homologous recombination (HR) in the repair of these breaks, the w(hd) P-element was mobilized in flies carrying mutant alleles of either lig4 or rad54. The survival of both lig4- and rad54-deficient males was reduced to 25% in comparison to the wild type, indicating that both NHEJ and HR are involved in the repair P-induced gaps in males. Survival of lig4-deficient females was not affected at all, implying that HR using the homologous chromosome as a template can partially compensate for the impaired NHEJ pathway. In rad54 mutant females survival was reduced to 70% after w(hd) excision. PCR analysis indicated that the undamaged homologous chromosome may compensate for the potential loss of the broken chromosome in rad54 mutant females after excision. Molecular analysis of the repair junctions revealed microhomology (2-8 bp)-dependent DSB repair in most products. In the absence of Lig4, the 8-bp target site duplication is used more frequently for repair. Our data indicate the presence of efficient alternative end-joining mechanisms, which partly depend on the presence of microhomology but do not require Lig4.  相似文献   

15.
Non-homologous end joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammalian cells and is likely responsible for the non-homologous integration of transgenes. In higher eukaryotes, this pathway predominates over the homologous recombination (HR) pathway and therefore may account for the low level of HR events that occur in mammalian cells. We evaluated the effects of transient RNAi-induced down-regulation of key components of the NHEJ pathway in human HCT116 cells. Treatment with siRNA targeting Ku70 and Xrcc4 reduced corresponding protein levels by 80-90% 48h after transfection, with a return to normal levels by 96h. Additionally, down-regulation of Ku70 and Xrcc4 resulted in a concomitant depletion of both Ku70 and Ku86 proteins. Biological consequences of transient RNAi-mediated depletion of Ku70 and Xrcc4 included sensitization to gamma radiation and a significant decrease in the expression of a linear GFP reporter gene. The results highlight the possibility of a successful means to manipulate the NHEJ pathway by RNAi.  相似文献   

16.
Using a substrate measuring deletion or inversion of an I-SceI-excised fragment and both accurate and inaccurate rejoining, we determined the impact of non-homologous end-joining (NHEJ) on mammalian chromosome rearrangements. Deletion is 2- to 8-fold more efficient than inversion, independent of the DNA ends structure. KU80 controls accurate rejoining, whereas in absence of KU mutagenic rejoining, particularly microhomology-mediated repair, occurs efficiently. In cells bearing both the NHEJ and a homologous recombination (HR) substrate containing a third I-SceI site, we show that NHEJ is at least 3.3-fold more efficient than HR, and translocation of the I-SceI fragment from the NHEJ substrate locus into the HR-I-SceI site can occur, but 50- to 100-fold less frequently than deletion. Deletions and translocations show both accurate and inaccurate rejoining, suggesting that they correspond to a mix of KU-dependent and KU-independent processes. Thus these processes should represent prominent pathways for DSB-induced genetic instability in mammalian cells.  相似文献   

17.
DNA ligases catalyse the joining of DNA single- and double-strand breaks. Saccharomyces cerevisiae Cdc9p is a homologue of mammalian DNA ligase I and is required for DNA replication, recombination and single-strand break repair. The other yeast ligase, Lig4p/Dnl4p, is a homologue of mammalian DNA ligase IV, and functions in the non-homologous end-joining (NHEJ) pathway of DNA double-strand break repair [1] [2] [3] [4]. Lig4p interacts with Lif1p, the yeast homologue of the human ligase IV-associated protein, XRCC4 [5]. This interaction takes place through the carboxy-terminal domain of Lig4p and is required for Lig4p stability. We show that the carboxy-terminal interaction region of Lig4p is necessary for NHEJ but, when fused to Cdc9p, is insufficient to confer NHEJ function to Cdc9p. Also, Lif1p stimulates the in vitro catalytic activity of Lig4p in adenylation and DNA ligation. Nevertheless, Lig4p is inactive in NHEJ in the absence of Lif1p in vivo, even when Lig4p is stably expressed. We show that Lif1p binds DNA in vitro and, through in vivo cross-linking and chromatin immuno precipitation assays, demonstrate that it targets Lig4p to chromosomal DNA double-strand breaks. Furthermore, this targeting requires another key NHEJ protein, Ku.  相似文献   

18.
We have examined the genetic requirements for efficient repair of a site-specific DNA double-strand break (DSB) in Schizosaccharomyces pombe. Tech nology was developed in which a unique DSB could be generated in a non-essential minichromosome, Ch(16), using the Saccharomyces cerevisiae HO-endonuclease and its target site, MATa. DSB repair in this context was predominantly through interchromosomal gene conversion. We found that the homologous recombination (HR) genes rhp51(+), rad22A(+), rad32(+) and the nucleotide excision repair gene rad16(+) were required for efficient interchromosomal gene conversion. Further, DSB-induced cell cycle delay and efficient HR required the DNA integrity checkpoint gene rad3(+). Rhp55 was required for interchromosomal gene conversion; however, an alternative DSB repair mechanism was used in an rhp55Delta background involving ku70(+) and rhp51(+). Surprisingly, DSB-induced minichromosome loss was significantly reduced in ku70Delta and lig4Delta non-homologous end joining (NHEJ) mutant backgrounds compared with wild type. Furthermore, roles for Ku70 and Lig4 were identified in suppressing DSB-induced chromosomal rearrangements associated with gene conversion. These findings are consistent with both competitive and cooperative interactions between components of the HR and NHEJ pathways.  相似文献   

19.
We have previously reported several lines of evidence that support a role for cellular DNA repair systems in completion of the retroviral DNA integration process. Failure to repair an intermediate in the process of integrating viral DNA into host DNA appears to trigger growth arrest or death of a large percentage of infected cells. Cellular proteins involved in the nonhomologous end joining (NHEJ) pathway (DNA-PK(CS)) and the damage-signaling kinases (ATM and ATR) have been implicated in this process. However, some studies have suggested that NHEJ proteins may not be required for the completion of lentiviral DNA integration. Here we provide additional evidence that NHEJ proteins are required for stable transduction by human immunodeficiency type 1 (HIV-1)-based vectors. Our analyses with two different reporters show that the number of stably transduced DNA-PK(CS)-deficient scid fibroblasts was reduced by 80 to 90% compared to the number of control cells. Furthermore, transduction efficiency can be restored to wild-type levels in scid cells that are complemented with a functional DNA-PK(CS) gene. The efficiency of stable transduction by an HIV-1-based vector is also reduced upon infection of Xrcc4 and ligase IV-deficient cells, implying a role for these components of the NHEJ repair pathway. Finally, we show that cells deficient in ligase IV are killed by infection with an integrase-competent but not an integrase-deficient HIV-1 vector. Results presented in this study lend further support to a general role for the NHEJ DNA repair pathway in completion of the retroviral DNA integration process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号