共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
基因编辑技术是指对目标基因进行“编辑”,实现对特定基因片段的删除、插入和替换的一项技术.如今该技术已经被广泛应用于细菌、真菌、动物和植物等领域,其中成簇的规律间隔的短回文重复序列及其相关系统(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR... 相似文献
4.
CRISPR/Cas基因编辑技术在植物基因功能研究和作物遗传改良方面具有重要应用价值,其主要依赖gRNA引导核酸内切酶在目标基因组位置产生双链断裂(DSBs),DSBs在通过非同源末端连接(NHEJ)或同源重组(HDR)方式进行修复时,会引起靶标位置核苷酸序列的缺失、插入或者替换,从而实现基因编辑。介绍了CRISPR/Cas基因编辑技术的作用机理及发展趋势,并对CRISPR/Cas技术在主要粮食及经济作物育种中的应用进展进行了总结,以期为农作物育种提供有益的参考。 相似文献
5.
CRISPR/Cas9基因组编辑技术的研究进展及其应用 总被引:1,自引:0,他引:1
随着测序技术的不断进步,获得了越来越多物种的全基因组序列。面对这些海量的基因组数据,基因定点编辑技术是高效捕获目标基因、迅速获得基因功能和应用信息的重要研究手段。CRISPR/Cas9是目前最有效的一种基因定点编辑技术。CRISPR/Cas9系统(clustered regularly interspaced short palindromic repeats/CRISPR-associated)是广泛存在于细菌及古生菌中的,由细菌体长期进化而形成,能够降解入侵病毒或噬菌体DNA的适应性免疫系统。因此,对CRISPR/Cas9系统的发展、应用,以其在相关研究中的应用前景进行阐述显得尤为必要。 相似文献
6.
基因修饰小鼠在研究人类疾病致病机理和治疗手段中起到了关键作用。传统的小鼠基因组编辑使用胚胎干细胞(ES细胞),虽然可以对内源基因进行精细的修改,但是复杂、繁琐并且耗时。近几年发展的人工核酸酶可以在靶位点切割DNA双链,诱发细胞内源性修复机制,发生同源重组修复或非同源末端连接,从而提高了基因组编辑的效率。从ZFN到TALEN再到CRISPR/Cas9技术,新型基因组编辑技术正以惊人的速度渗入到生命科学的各项研究工作中。将对新型基因组编辑技术进行介绍,着重阐述CRISPR/Cas9系统介导的基因编辑技术在基因修饰小鼠中的应用,比较该系统与其他方法的优越性和不足,并对该系统进行展望。 相似文献
8.
9.
丝状真菌(filamentous fungi)通常指那些菌丝体较发达且不产生大型肉质子实体结构的真核微生物。丝状真菌不仅在自然界物质循环中发挥着重要作用,还与人类健康和工农业生产有着紧密的联系。然而,对丝状真菌进行遗传操作相对困难,极大地妨碍了丝状真菌的遗传学研究。成簇的规律间隔的短回文重复序列及其相关系统(clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9, CRISPR/Cas9)是近年来发现的一种存在于细菌和古菌中保守的获得性免疫防御机制。最近,CRISPR/Cas9被开发成为了一种方便灵活的基因组编辑技术。目前,该技术已经广泛应用在不同物种的基因组编辑中。本文概述了CRISPR/Cas9在丝状真菌基因组编辑中的应用进展,旨在为开展该领域的研究工作提供参考。 相似文献
10.
CRISPR(Clustered regularly interspaced short palindromic repeats)/Cas(CRISPR associated proteins)是在细菌和古细菌中发现的一种用来抵御病毒或质粒入侵的获得性免疫系统.目前已发现的CRISPR/Cas系统包括Ⅰ,Ⅱ和Ⅲ型,其中Ⅱ型系统的组成较简单,由其改造成的CRISPR/Cas9技术已成为一种高效的基因组编辑工具.自2013年CRISPR/Cas9技术成功用于哺乳动物基因组定点编辑以来,应用该技术进行基因组编辑的报道呈现出爆发式的增长.农业动物不仅是重要的经济动物,也是人类疾病和生物医药研究的重要模式动物.本文综述了CRISPR/Cas9技术在农业动物中的研究和应用进展,简述了该技术的脱靶效应及减少脱靶的主要方法,并展望了该技术的应用前景. 相似文献
11.
12.
13.
14.
In recent years, research in life sciences has been remarkably revolutionized owing to the establishment, development and application of genome editing technologies. Genome editing has not only accelerated fundamental research but has also shown promising applications in agricultural breeding and therapy. In particular, the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology has become an indispensable tool in molecular biology owing to its high efficacy and simplicity. Genome editing tools have also been established in silkworm (Bombyx mori), a model organism of Lepidoptera insects with high economic importance. This has remarkably improved the level and scope of silkworm research and could reveal new mechanisms or targets in basic entomology and pest management studies. In this review, we summarize the progress and potential of genome editing in silkworm and its applications in functional genomic studies for generating novel genetic materials. 相似文献
15.
Genome Editing—Principles and Applications for Functional Genomics Research and Crop Improvement 总被引:1,自引:0,他引:1
Genome editing technologies are powerful tools for studying gene function and for crop improvement. The technologies rely on engineered endonucleases to generate double stranded breaks (DSBs) at target loci. The DSBs are repaired through the error-prone non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways in cells, resulting in mutations and sequence replacement, respectively. In the widely used CRISPR/Cas9 system, the endonuclease Cas9 is targeted by a CRISPR small RNA to DNA sequence of interest. In this review, we describe the four available types of genome editing tools, ZFN, TALEN, CRISPR/Cas9 and CRISPR/Cpf1, and show their applications in functional genomics research and precision molecular breeding of crops. 相似文献
16.
Patrycja Czerwińska Sylwia Mazurek Iga Kołodziejczak Maciej Wiznerowicz 《Reports of Practical Oncology and Radiotherapy》2019,24(2):180-187
Induced pluripotent stem cells derived from normal somatic cells could be utilized to study tumorigenesis through overexpression of specific oncogenes, downregulation of tumor suppressors and dysregulation of other factors thought to promote tumorigenesis. Therefore, effective approaches that provide direct modifications of induced pluripotent stem cell genome are extremely needed. Emerging strategies are expected to provide the ability to more effectively introduce diverse genetic alterations, from as small as single-nucleotide modifications to whole gene amplification or deletion, all with a high degree of target specificity. To date, several techniques have been applied in stem cell studies to directly edit cell genome (ZFNs, TALENs or CRISPR/Cas9). In this review, we summarize specific gene delivery strategies that were applied to stem cell studies together with genome editing techniques, which enable a direct modification of endogenous DNA sequences in the context of cancer studies. 相似文献
17.
Satoru Sukegawa Hiroaki Saika Seiichi Toki 《The Plant journal : for cell and molecular biology》2021,106(5):1208-1218
Genome-editing technologies consisting of targeted mutagenesis and gene targeting enable us to modify genes of interest rapidly and precisely. The discovery in 2012 of CRISPR/Cas9 systems and their development as sequence-specific nucleases has brought about a paradigm shift in biology. Initially, CRISPR/Cas9 was applied in targeted mutagenesis to knock out a target gene. Thereafter, advances in genome-editing technologies using CRISPR/Cas9 developed rapidly, with base editing systems for transition substitution using a combination of Cas9 nickase and either cytidine or adenosine deaminase being reported in 2016 and 2017, respectively, and later in 2021 bringing reports of transversion substitution using Cas9 nickase, cytidine deaminase and uracil DNA glycosylase. Moreover, technologies for gene targeting and prime editing systems using DNA or RNA as donors have also been developed in recent years. Besides these precise genome-editing strategies, reports of successful chromosome engineering using CRISPR/Cas9 have been published recently. The application of genome editing to crop breeding has advanced in parallel with the development of these technologies. Genome-editing enzymes can be introduced into plant cells, and there are now many examples of crop breeding using genome-editing technologies. At present, it is no exaggeration to say that we are now in a position to be able to modify a gene precisely and rearrange genomes and chromosomes in a predicted way. In this review, we introduce and discuss recent highlights in the field of precise gene editing, chromosome engineering and genome engineering technology in plants. 相似文献