首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
油菜是食用油、优质饲料蛋白的重要来源,杂种优势利用是油菜培育优势性状最重要的手段,且提高亲本的选育效率对优质品种的培育具有积极的推动作用。现有油菜育种技术存在效率低、周期长、盲目性大、应用范围有限等诸多问题,不适于油菜产业快速发展的需求。双单倍体诱导育种技术是近年来新兴的一种快速选育油菜新品种的技术方法。该技术以操作简便、应用范围广、效率高等优势被广泛应用于油菜新品种的选育过程中。从油菜双单倍体诱导技术创新研究的发现、作用表现、诱导机制、作用价值等方面系统地综述了油菜双单倍体诱导技术的研究进展,展望了油菜双单倍体诱导技术的应用前景,以期为未来油菜双单倍体诱导技术以及其他作物诱导系的研究和利用提供参考。  相似文献   

2.
植物单倍体诱导技术发展与创新   总被引:2,自引:0,他引:2  
《遗传》2020,(5)
单倍体育种是培育作物新品种的主要育种技术之一,提高单倍体诱导频率和简化诱导程序是单倍体育种技术的关键。随着单倍体诱导技术的发展与改进,单倍体育种技术已被广泛应用于许多重要植物的育种研究中,展现出基因纯合快速、育种年限缩短、育种效率提高等优势。单倍体诱导技术与杂交育种、诱变育种、反向育种和分子标记辅助选择育种等技术相结合,在作物品种改良上的作用更加显著。单倍体和双单倍体在遗传群体构建、基因功能鉴定、转基因研究、细胞学研究等方面具有重要应用价值。本文从单倍体诱导技术、单倍体和双单倍体应用等方面综述了植物单倍体诱导技术的发展,尤其是近年来利用基因组编辑技术创制主要作物单倍体诱导系的进展,并分析了目前研究中存在的问题和今后的发展方向,以期促进单倍体诱导技术尤其是利用基因编辑创造诱导系技术在作物育种中的应用。  相似文献   

3.
该文较全面地综述了获得植物单倍体的相关途径及其在基础科学研究和植物育种方面的重要应用,着重介绍了一种基于着丝粒改造的染色体消除法诱导单倍体的策略及植物单倍体在基因组学研究中潜在的应用价值,旨在促进植物单倍体技术的完善并开拓其应用领域。  相似文献   

4.
通过花药培养已从20多个科的一百多种植物中得到单倍体植物。未授粉子房离体培养人工诱导单倍体的研究,已从二棱大麦、小麦和烟草、水稻、玉米、普通大麦、向日葵、百合、青稞等植物的未授粉子房培养出单倍体植物。1987年我们进行了白魔芋未授粉子房的离体培养,并获得单倍体植物,现将实验初步结果报道如下。  相似文献   

5.
卢宝荣LU  Bao-Rong 《遗传》1993,15(2):42-44
自S.Guha和S.C.Maheshwari 1964年以曼陀罗(Datura)花药为材料,首次成功地诱导出离体幼胚以来,人们经过不断的发展和完善使之形成了一套完整的花药培养技术,即通过植物花药(或小孢子)的培养,大批创制单倍体并经染色体加倍进而获得双单倍体(Doubled haploid)植株。该技术被迅速而广泛地应用于作物育种程序之中。目前已有不少的栽培作物成功地获得了花粉植株,如:烟草、小麦、大麦、水稻、黑麦、小黑麦、玉米、甘  相似文献   

6.
单倍体培养是快速获得菊科纯合系的重要途径。目前已进行单倍体研究的菊科植物共有13个种,其中9个已成功获得单倍体植株。菊科中诱导单倍体的途径有花药培养、小孢子培养、离体雌核培养、远源杂交和辐射花粉诱导单倍体。本文详细论述了不同外植体发育时期、预处理、培养基、培养条件等因素对单倍体植株诱导再生的影响。对菊科植物单倍体诱导的几种途径进行对比总结,指出研究中存在的问题并提出思路和建议。  相似文献   

7.
严格的讲 ,单倍体是指体细胞中仅含有 1个染色体组的个体。然而 ,高等生物多为二倍体 ,其配子只含有 1个染色体组 ,因而由配子形成的个体亦可以称为单倍体。由于自然界先有单倍体 ,后有二倍体 ,因此 ,根据系统演化 ,单倍体可以分为原生的和次生的两类。1 原生的单倍体原生的单倍体是指由单倍性的孢子发育而成的个体 ,包括细菌、真菌、藻类植物、苔鲜植物的叶状体和茎叶体以及蕨类植物的原叶体等。这类单倍体不仅可以独立生活 ,而且主要借助无性生殖繁衍后代 ,诸如细菌的分裂生殖、酵母的出芽生殖、丝状真菌和藻类的断裂生殖以及苔藓、蕨类…  相似文献   

8.
啤酒酵母工业菌株单倍体的诱导、分离和鉴定   总被引:1,自引:0,他引:1  
【目的】探索适宜的方法进行啤酒酵母工业菌株单倍体的诱导、分离和鉴定,为啤酒酵母改良和遗传学研究提供便利。【方法】首先,选择产孢效果最好的培养基进行产孢诱导,诱导产生的孢子在YPD培养基上形成菌落后,用流式细胞技术检测其DNA含量,进而判断其倍性;单倍体菌株的交配型通过MAT-PCR和杂交实验确定。【结果】啤酒酵母工业菌G-03通过产孢诱导和孢子分离、富集后得到26株菌,最终通过流式细胞技术确定了其中4株为单倍体,MATa和MATα型各2株。通过扫描电镜法观察4株单倍体菌株及出发菌G-03的细胞形态,发现单倍体菌株的形态和出发菌有较大区别,单倍体菌株长期培养没有假丝生长的现象发生。【结论】啤酒酵母工业菌单倍体育种较为困难,严格的单倍体筛选、鉴定尤其具有挑战性。  相似文献   

9.
用花药培养法由雄性不育材料诱导单倍体尚未见报道。在马铃薯中,所有双单倍体或一单倍体,也都是由有效花粉百分数较高的雄性可育材料诱导产生的。本文首次报道了用花药培养法由一个典型的雄性不育的双单倍体品系诱导产生一单倍体的试验结果。从接种的1850个花药中,诱导出了28个胚状体和23块愈伤组织,并从它们分化出了24株绿苗。分化出的小植株生活力大部分较弱,在继代培养过程中逐渐死亡,但也有一些生活力较强的植株存话下来,经L_1、L_2和L_1 3个胚层细胞的检查表明,它们具有典型的一倍体特征,体细胞染色体数目为2n=x=12。植株之间表现出明显的性状分离,说明它们均来自减数分裂后的小孢子。大部分植株的产量较低,但也有少数生活力强,单株块茎产量达0.5公斤左右的抗病、品质好的植株。所有植株都具有不正常的减数分裂,无有效花粉形成,个别植株能结实,但无种子形成,用四倍体或双单倍体的可育花粉授粉也不能形成种子,进一步证明了它们具有一单倍体特性。对诱导马铃薯一单倍体和利用雄性不育材料进行花药培养诱导单倍体的意义进行了讨论。  相似文献   

10.
被子植物未受精胚珠与子房离体培养的研究进展   总被引:2,自引:1,他引:2  
介绍被子植物未受精胚珠与子房离体培养诱导单倍体植株的研究进展。迄今已有9个科21种植物用这一方法诱导出单倍体植株,植物的基因型、外植体的发育程度、接种前的预处理、培养基和培养条件等均能影响诱导率的高低。胚胎学观察揭示大孢子与胚囊内的卵细胞、助细胞和反足细胞均有可能在培养中启动分裂,通过胚状体或愈伤组织形成单倍体植株。本项技术在植物单倍体育种中可发挥重要作用。  相似文献   

11.
Novel technologies in doubled haploid line development   总被引:1,自引:0,他引:1       下载免费PDF全文
haploid inducer line can be transferred (DH) technology can not only shorten the breeding process but also increase genetic gain. Haploid induction and subsequent genome doubling are the two main steps required for DH technology. Haploids have been generated through the culture of immature male and female gametophytes, and through inter‐ and intraspecific via chromosome elimination. Here, we focus on haploidization via chromosome elimination, especially the recent advances in centromere‐mediated haploidization. Once haploids have been induced, genome doubling is needed to produce DH lines. This study has proposed a new strategy to improve haploid genome doubling by combing haploids and minichromosome technology. With the progress in haploid induction and genome doubling methods, DH technology can facilitate reverse breeding, cytoplasmic male sterile (CMS) line production, gene stacking and a variety of other genetic analysis.  相似文献   

12.
Anther culture for haploid and doubled haploid production   总被引:6,自引:0,他引:6  
Haploids are plants with a gametophytic chromosome number and doubled haploids are haploids that have undergone chromosome duplication. The production of haploids and doubled haploids (DHs) through gametic embryogenesis allows a single-step development of complete homozygous lines from heterozygous parents, shortening the time required to produce homozygous plants in comparison with the conventional breeding methods that employ several generations of selfing. The production of haploids and DHs provides a particularly attractive biotechnological tool, and the development of haploidy technology and protocols to produce homozygous plants has had a significant impact on agricultural systems. Nowadays, these biotechnologies represent an integral part of the breeding programmes of many agronomically important crops. There are several available methods to obtain haploids and DHs, of which in vitro anther or isolated microspore culture are the most effective and widely used. This review article deals with the current status of knowledge on the production of haploids and DHs through pollen embryogenesis and, in particular, anther culture.  相似文献   

13.
Androgenesis,gynogenesis, and parthenogenesis haploids in cucurbit species   总被引:1,自引:0,他引:1  
Haploids and doubled haploids are critical components of plant breeding. This review is focused on studies on haploids and double haploids inducted in cucurbits through in vitro pollination with irradiated pollen, unfertilized ovule/ovary culture, and anther/microspore culture during the last 30 years, as well as comprehensive analysis of the main factors of each process and comparison between chromosome doubling and ploidy identification methods, with special focus on the application of double haploids in plant breeding and genetics. This review identifies existing problems affecting the efficiency of androgenesis, gynogenesis, and parthenogenesis in cucurbit species. Donor plant genotypes and surrounding environments, developmental stages of explants, culture media, stress factors, and chromosome doubling and ploidy identification are compared at length and discussed as methodologies and protocols for androgenesis, gynogenesis, and parthenogenesis in haploid and double haploid production technologies.  相似文献   

14.
In vitro haploid and dihaploid production via unfertilized ovule culture   总被引:2,自引:0,他引:2  
Haploids and doubled haploids are very important in plant breeding, enabling the time needed to produce homozygous lines to be shortened compared with conventional breeding. In the present review, emphasis is given to haploid induction through unfertilized ovule/ovary culture. Attention is given to induction of haploid plants from female gametophyte culture through analysis of factors in the processes of gynogenesis, including genotype selection, stage of ovule development, pretreatment, and culture media containing nutritional components and phytohormones. The gynogenetic approach may be of great value in discovering novel genetic recombinations. Application of double haploids in genetics and plant breeding is also highlighted. This review also identifies some existing knowledge gaps where work may increase the efficiency of this process in different plant species.  相似文献   

15.
Doubled haploids are routinely created and phenotypically selected in plant breeding programs to accelerate the breeding cycle. Genomic selection, which makes use of both phenotypes and genotypes, has been shown to further improve genetic gain through prediction of performance before or without phenotypic characterization of novel germplasm. Additional opportunities exist to combine genomic prediction methods with the creation of doubled haploids. Here we propose an extension to genomic selection, optimal haploid value (OHV) selection, which predicts the best doubled haploid that can be produced from a segregating plant. This method focuses selection on the haplotype and optimizes the breeding program toward its end goal of generating an elite fixed line. We rigorously tested OHV selection breeding programs, using computer simulation, and show that it results in up to 0.6 standard deviations more genetic gain than genomic selection. At the same time, OHV selection preserved a substantially greater amount of genetic diversity in the population than genomic selection, which is important to achieve long-term genetic gain in breeding populations.  相似文献   

16.
Some cytological and morphological features of haploid and dihaploid winter rapó plants obtained via the anther cultivation approach have been studied. It was shown that in haploid plants the number of chloroplasts in stomatal guard cells, the size of the stomatal guard cells themselves were much smaller, and the number of stomata per square unit was greater than in doubled haploids and diploids. Haploids were also characterized by smaller sizes of petals and anthers and, in general, a smaller flower as compared to dihapliods and diploids.  相似文献   

17.
Haploids of three cultivars of Triticum aestivum (Thatcher, Chris, and Chinese Spring) were obtained from crosses with Zea mays. The level of chromosome pairing at metaphase I and the synaptic behaviour at prophase I was studied. There were differences in the meiotic behaviour of the haploids from different cultivars. Thatcher and Chris haploids had significantly higher levels of pairing at metaphase I than Chinese Spring haploids. This metaphase I pairing was correlated with higher levels of synapsis achieved in the Thatcher and Chris prophase I nuclei than in the Chinese Spring nuclei. Variation in the effectiveness of the diploidizing mechanism among cultivars of wheat is proposed to have a genetic origin and the role of the Ph1 locus in the different haploids is discussed.  相似文献   

18.
The objective of this work was to produce doubled haploid plants from durum wheat through the induction of androgenesis. A microspore culture technique was developed and used to produce fertile doubled haploid plants of agronomic interest. Five cultivars, one selected line, plus a collection of 20 F1 crosses between different genotypes of high breeding value were used. Studies on several factors such as pre-treatments and media components were carried out in order to develop a protocol to regenerate green haploid plantlets. Anthers were pre-treated in 0.7 M mannitol. Microspores, from anther maceration, were plated on a C17 induction culture medium with ovary co-culture. The optimum regeneration medium J25–8 was used. From 35 microspore isolations, 407 green plantlets were obtained. With this technique mature embryos were obtained. Green plants were regenerated from all genotypes used and approximately 67% of them were spontaneously doubled haploids. Some haploids and a very few polyploids plants were obtained. From the 407 plants, 275 were completely fertile and gave enough seeds to be assayed in the field. This protocol could be used complementary to or instead of the intergeneric crossing with maize as an economically feasible method to obtain doubled haploids from most durum wheat genotypes.  相似文献   

19.
There is a requirement of haploid and double haploid material and homozygous lines for cell culture studies and breeding in flax. Anther culture is currently the most successful method producing doubled haploid lines in flax. Recently, ovary culture was also described as a good source of doubled haploids. In this review we focus on tissue and plants regeneration using anther culture, and cultivation of ovaries containing unfertilized ovules. The effect of genotype, physiological status of donor plants, donor material pre-treatment and cultivation conditions for flax anthers and ovaries is discussed here. The process of plant regeneration from anther and ovary derived calli is also in the focus of this review. Attention is paid to the ploidy level of regenerated tissue and to the use of molecular markers for determining of gametic origin of flax plants derived from anther and ovary cultures. Finally, some future prospects on the use of doubled haploids in flax biotechnology are outlined here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号